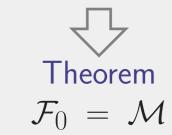
Weaker Forms of Monotonicity for Declarative Networking: universite it a more fine-grained answer to the CALM-conjecture a more fine-grained answer to the CALM-conjecture to the CALM-

Hasselt University & transnational University of Limburg ² LogicBlox, Inc.

Introduction

- ► Declarative Networking: Datalog based languages for parallel and distributed computing
- ► Cloud-computing: Setting with asynchronous communication via messages which can be arbitrarily delayed but not lost
- ► CALM-conjecture: A query has a coordination-free and eventually consistent execution strategy iff the query is monotone

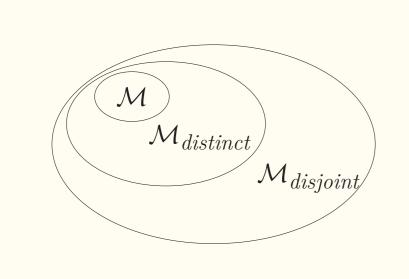

[Hellerstein, 2010]

CALM = Consistency And Logical Monotonicity

[Ameloot, Neven, Van den Bussche, 2011] CALM

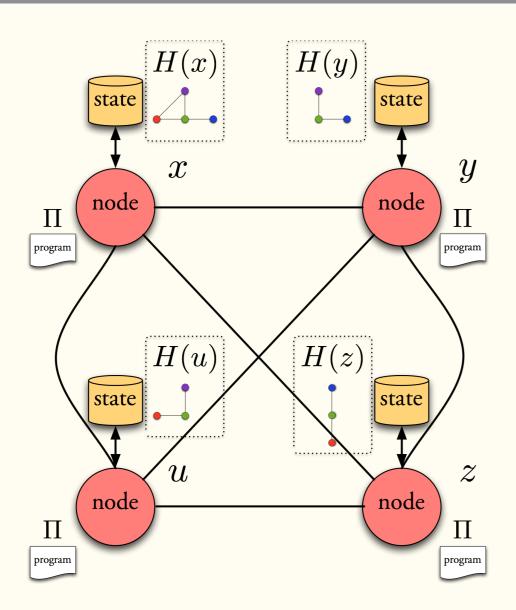
A query has a coordination-free and eventually consistent execution strategy

the query is monotone


Monotonicity

Definition

A query Q is monotone if $Q(\mathbf{I}) \subseteq Q(\mathbf{I} \cup \mathbf{J})$ for all database instances \mathbf{I} and J.


Notation \mathcal{M} : class of monotone queries

- Example lacktriangles Select triangles in a graph $\in \mathcal{M}$
 - ightharpoonup Select open triangles in a graph $ot\in\mathcal{M}$

Relational Transducer Networks

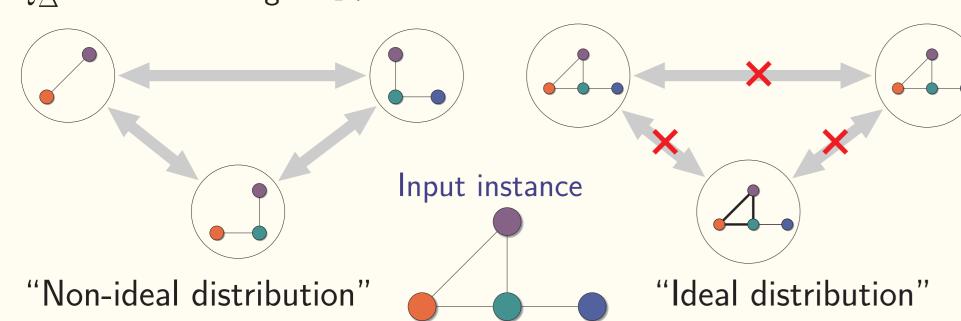
- ▶ Network $\mathcal{N} = \{x, y, u, z\}$
- ▶ Transducer ∏
- messages can be arbitrarily delayed but never get lost

Semantics defined in terms of runs over a transition system

Definition

- A transducer Π computes a query Q if
- \blacktriangleright for all networks \mathcal{N} , \longleftarrow Network independent
- ▶ for all databases I, C Data distribution independent
- \triangleright for all horizontal distributions H, and
- \blacktriangleright for every run of Π ,
 - $out(\Pi) = Q(\mathbf{I}).$

Consistency requirement


Definition

 Π is coordination-free if for all inputs ${f I}$ there is a distribution on which Π computes $Q(\mathbf{I})$ without having to do communication.

Goal: separate data-communication from coordination-communication

Example

 Q_{Δ} : select all triangles $\in \mathcal{M}$

Definition

 $\mathcal{F}_0 = \text{set of queries which are distributedly computed by coordination-}$ free transducers.

Positive Datalog with inequalities

 $|\mathsf{Datalog}(
eq) \subsetneq \mathsf{wILOG}(
eq) = \mathcal{M}|$

▶ Datalog(\neq) \subseteq $\mathcal{M} \cap \text{PTIME}$

[Afrati, Cosmadakis, Yannakakis, 1994]

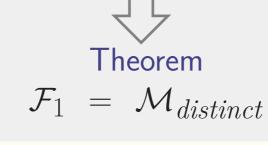
ightharpoonup wlLOG(eq) = \mathcal{M}

[Cabibbo, 1998]

CALM-conjecture

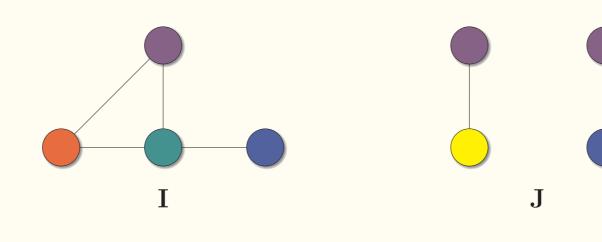
- ► [Ameloot, Neven, Van den Bussche, 2011]: TRUE
 - for a setting where nodes have **no** information about the distribution of facts
- ► [Zinn, Green, Ludäscher, 2012]: FALSE

for settings where nodes have information about the distribution of facts


► TRUE when also refining montonicity

CALM Revision 1

A query has a coordination-free and eventually consistent execution strategy under distribution policies


the query is domain-distinct-monotone

Domain-distinct-monotonicity

- ▶ A fact **f** is domain distinct from instance **I** when $adom(\mathbf{f}) \nsubseteq adom(\mathbf{I})$.
- lacktriangle An instance ${f J}$ is domain distinct from instance ${f I}$ when every fact ${f f}\in {f J}$ is domain distinct from I.

Example

Definition


A query Q is domain-distinct-monotone if $Q(\mathbf{I}) \subseteq Q(\mathbf{I} \cup \mathbf{J})$ for all \mathbf{I} and ${\bf J}$ for which ${\bf J}$ is domain distinct from ${\bf I}$.

Notation

 $\mathcal{M}_{distinct}$: class of domain-distinct-monotone queries Remark $\mathcal{M}_{distinct}$: class of queries preserved under extensions

Policy-aware Transducers

[Zinn, Green, Ludäscher, 2012]

Definition

- ▶ A distribution policy \mathbf{P} for σ and \mathcal{N} is a total function from $facts(\sigma)$ to the power set of \mathcal{N} (where $\mathbf{P}(\mathbf{f}) \neq \emptyset$, for every fact \mathbf{f}).
- ▶ A policy-aware transducer is a transducer with access to P restricted to its active domain.

Intuition

- every node is responsible for a predetermined set of facts
- \triangleright every fact \mathbf{f} in the global instance appears on all nodes responsible for \mathbf{f} Definition

A policy-aware transducer Π computes a query Q if

- \triangleright for all networks \mathcal{N} ,
- ▶ for all databases I,
- ▶ for all distribution policies P, and
- \blacktriangleright for every run of Π ,

$out(\Pi) = Q(\mathbf{I}).$

Definition

 $\mathcal{F}_1 = \mathsf{set}$ of queries which are distributedly computed by policy-aware coordination-free transducers.

Proof of $\mathcal{M}_{distinct} \subseteq \mathcal{F}_1$

Observation

Let I be an instance, $C \subseteq adom(I)$.

Induced instance: $\mathbf{I}_{|C} = \{ \mathbf{f} \in \mathbf{I} \mid adom(\mathbf{f}) \subseteq C \}$

By domain-distinct-monotonicity: $Q(\mathbf{I}_{|C}) \subseteq Q(\mathbf{I})$

C is complete at node x when x knows for every fact **f** with $adom(\mathbf{f}) \subseteq$ C whether $\mathbf{f} \in \mathbf{I}$ or $\mathbf{f} \notin \mathbf{I}$.

Algorithm

- broadcast all positive and negative facts
- ► Evaluate query on complete sets

Semi-positive Datalog

- $\mathsf{SP} ext{-}\mathsf{Datalog} \subsetneq \mathsf{SP} ext{-}\mathsf{wILOG} = \mathcal{M}_{distinct}$
- $ightharpoonup SP-Datalog \subsetneq \mathcal{M}_{distinct} \cap PTIME$

[Afrati, Cosmadakis, Yannakakis, 1994]

 $ightharpoonup ext{SP-wILOG} = \mathcal{M}_{distinct}$ [Cabibbo,1998] Summary $\mathsf{wILOG}(\neq)$ $\mathsf{Datalog}(\neq)$ $\downarrow \cap$ $\mathcal{M}_{distinct}$ SP-Datalog SP-wILOG

 $\mathcal{M}_{disjoint}$

Monotonicity

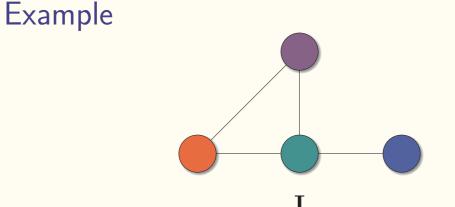
CALM Revision 2

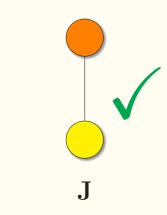
Coordination

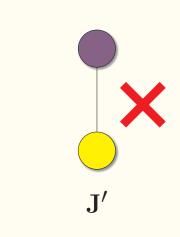
A query has a coordination-free and eventually consistent execution strategy under domain-guided distribution policies

semicon-wILOG

Datalog +


value invention


the query is domain-disjoint-monotone


$$\mathcal{F}_2 = \mathcal{M}_{\textit{disjoint}}$$

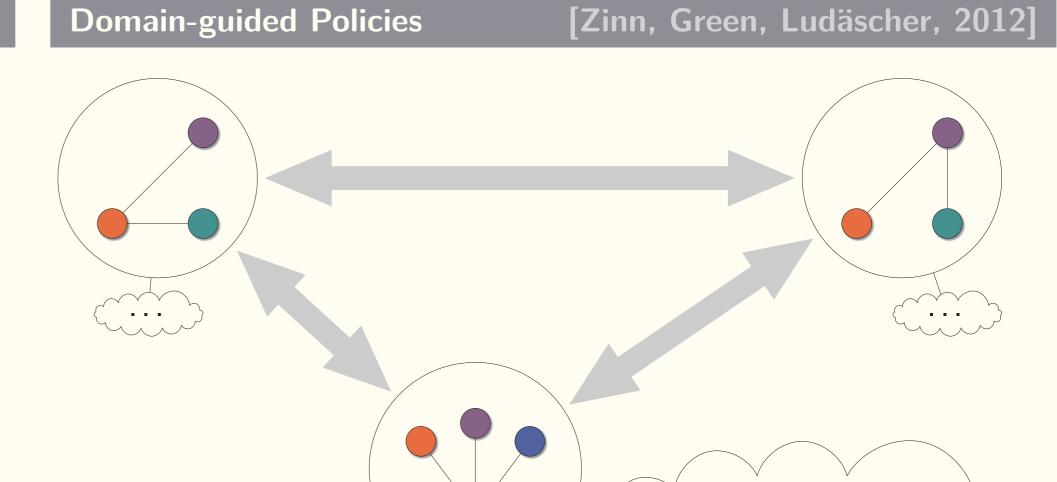
Domain-disjoint-monotonicity

ightharpoonup An instance ${\bf J}$ is domain disjoint from instance ${\bf I}$ when $adom(\mathbf{I}) \cap adom(\mathbf{J}) = \emptyset.$

"Distribution Policy"

 $\downarrow \cap$

semicon-Datalog


Datalog

Definition

A query Q is domain-disjoint-monotone if $Q(\mathbf{I}) \subseteq Q(\mathbf{I} \cup \mathbf{J})$ for all \mathbf{I} and ${f J}$ for which ${f J}$ is domain disjoint from ${f I}$.

Notation

 $\mathcal{M}_{disjoint}$: class of domain-disjoint-monotone queries

Definition

Input instance

- ightharpoonup A domain assignment α for $\mathcal N$ is a total function from $\operatorname{\mathbf{dom}}$ to the power set of \mathcal{N} .
- ► A distribution policy P is domain-guided if there is a domain assignment α where

Intuition

$$\mathbf{P}(R(a_1,\ldots,a_k)) = \bigcup_{i=1}^k \alpha(a_i).$$

- every node is responsible for a predetermined set of domain elements
- ightharpoonup every fact $R(a_1,...,a_k)$ in the global instance appears on all nodes responsible for at least one value a_i (with $i \in \{1, \ldots, k\}$)

Definition

 \mathcal{F}_2 = queries which are distributedly computed under domain-guided distribution policies by policy-aware coordination-free transducers.

Semiconnected Datalog

|semicon-Datalog \subseteq semicon-w|LOG $= \mathcal{M}_{disjoint} |$

Connected Rules

 $O(x,y,z) \leftarrow E(x,y), E(y,z), E(z,x)$ is connected $O(x,y,z) \leftarrow E(x,y), E(z,z)$ is not connected Definition

A stratified-Datalog program is semi-connected if all rules are connected except (possibly) those of the last stratum. Example

$$TC(x, y) \leftarrow E(x, y)$$

$$TC(x, y) \leftarrow E(x, z), TC(z, y)$$

$$O(x, y) \leftarrow \neg TC(x, y), x \neq y$$

Conclusion and Future Work

Conclusion

- ► Coordination-free evaluation = (refined) monotonicity
- ► Introduction of (semi-)connected Datalog

Can we put the CALM-conjecture to rest?

Future Work

- ▶ Other settings / other distribution policies?
- ► Coordination-free + efficient evaluation?

<firstname>.<lastname>@uhasselt.be 2 <firstname>.<lastname>@logicblox.com