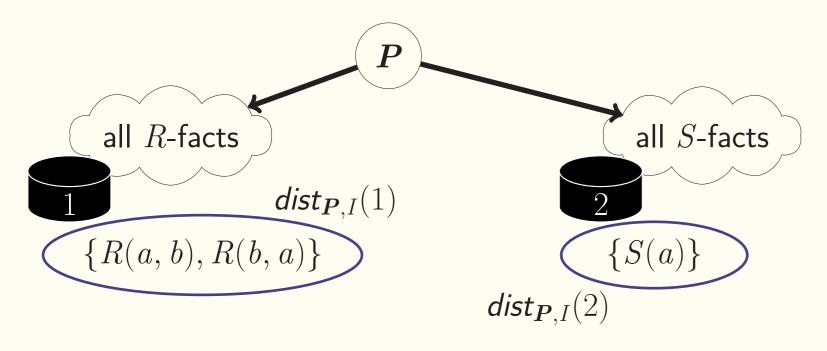
Parallel-Correctness and Transferability for universiteit Conjunctive Queries hasselt

Tom J Ameloot¹, Gaetano Geck², Bas Ketsman¹, Frank Neven¹, Thomas Schwentick² Hasselt University & transnational University of Limburg 2 TU Dortmund University

technische universität dortmund

Introduction

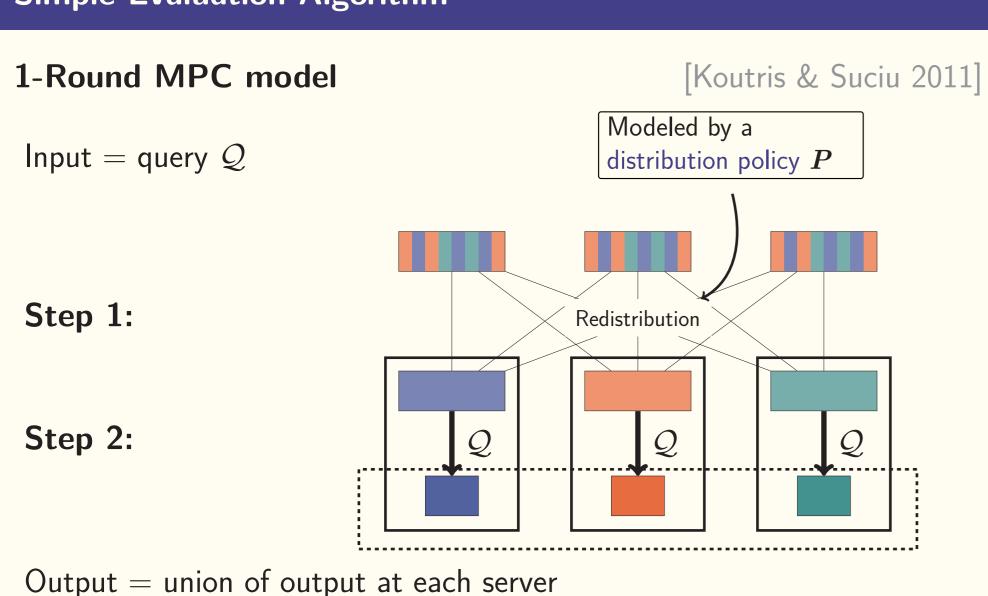

Big Data: Data too large to be processed on one server **Today systems:** Hadoop, Spark, ..., and many others

Common Strategy:

- ► Data is stored in a distributed way
- Query evaluation:
 - Multiple rounds with reshuffling

Distribution Policies

Network $\mathcal N$ is a finite set of nodes Instance $I = \{R(a, b), R(b, a), S(a)\}$

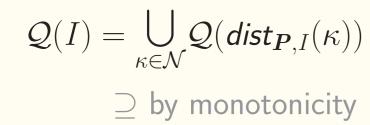


= distribution of I based on \boldsymbol{P}

Definition

A distribution policy P is a total function mapping facts (over **dom**) to sets of nodes in ${\mathcal N}$

Simple Evaluation Algorithm



When is the simple algorithm correct on a distribution policy?

Parallel-Correctness

Definition

Q is parallel-correct on I w.r.t. P, iff

Definition (w.r.t. all instances)

 ${\mathcal Q}$ is parallel-correct w.r.t. ${m P}$ iff

 ${\cal Q}$ is parallel-correct w.r.t. ${m P}$ on every I

Sufficient Condition

for every valuation V for Q,

$$\bigcap_{\boldsymbol{f}\in V(\mathsf{body}_{\mathcal{Q}})}\boldsymbol{P}(\boldsymbol{f})\neq\emptyset.$$

Intuition: Facts required by a valuation meet at some node

Lemma

(C0) implies \mathcal{Q} parallel-correct w.r.t. \boldsymbol{P} .

Not necessary Distribution policy P $all - \{R(b,a)\}$ $all - \{R(a, b)\}$ Query $Q: T(x,z) \leftarrow R(x,y), R(y,z), R(x,x)$ $V' = \{x, y, z \to a\}$ $V = \{x, z \to a, y \to b\}$ Requires: Requires: R(a, b) R(b, a) R(a, a)R(a,a)Derives: Derives: T(a, a)Do not meet

Notice: Q is minimal CQ

► CQ is minimal iff injective valuations are minimal

Proposition

Testing whether a valuation is minimal is coNP-complete.

Characterization

Lemma

 ${\mathcal Q}$ is parallel-correct w.r.t. ${m P}$ iff

(C1) for every minimal valuation V for Q,

$$igcap_{m{f} \in V(\mathsf{body}_\mathcal{Q})} m{P}(m{f})
eq \emptyset$$

Definition

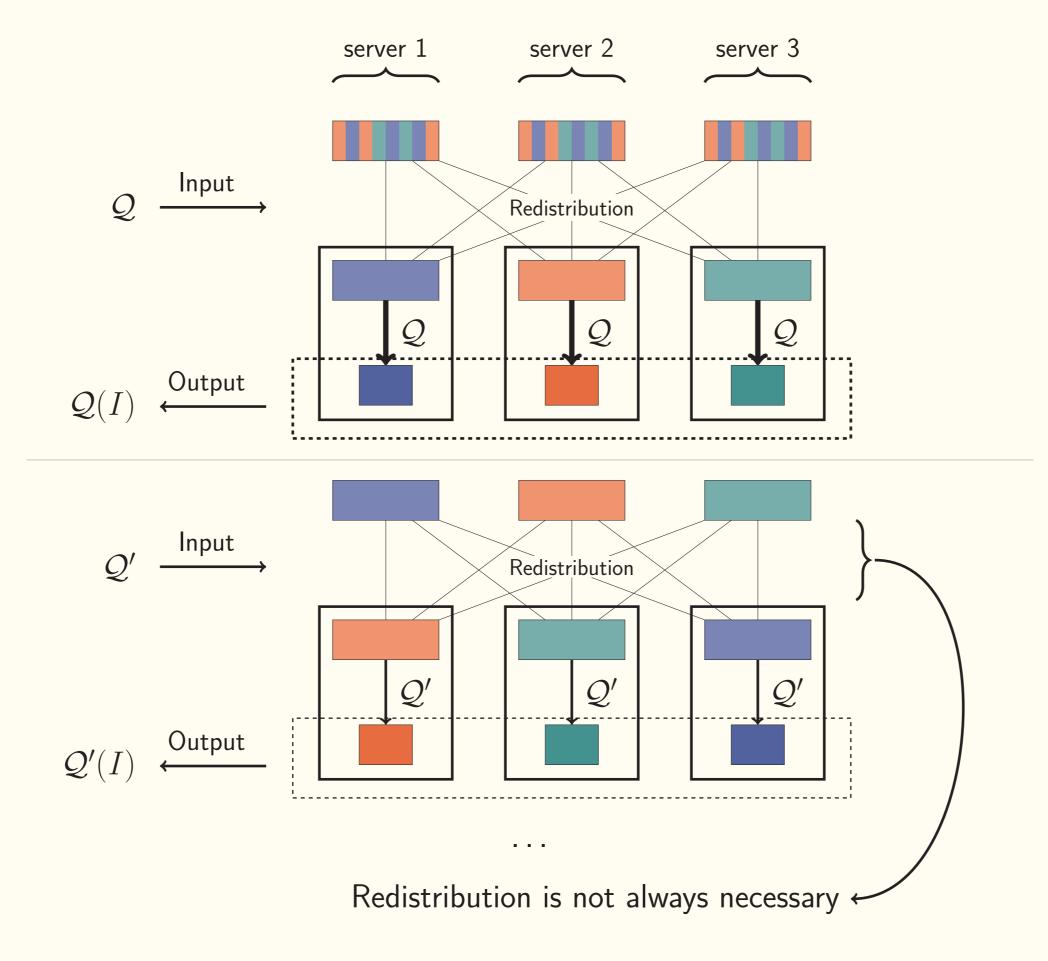
V is minimal if no V' exists, where

 $V'(\mathsf{head}_{\mathcal{Q}}) = V(\mathsf{head}_{\mathcal{Q}}), \ V'(\mathsf{body}_{\mathcal{Q}}) \subsetneq V(\mathsf{body}_{\mathcal{Q}}).$

Complexity

Theorem

Deciding whether Q is parallel-correct w.r.t. P is Π_2^P -complete.

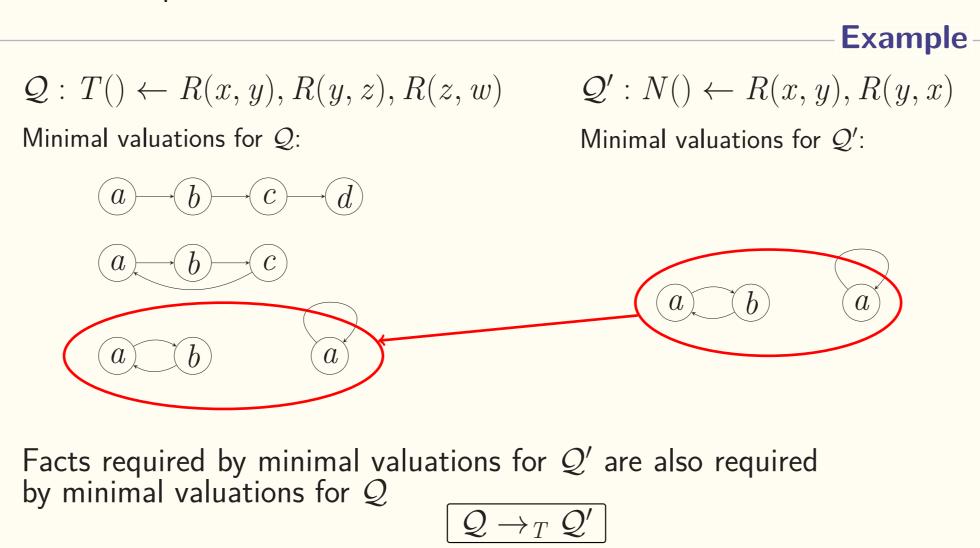

Proof:

- ▶ Lower bound: Reduction from Π_2 -QBF
- ► Upper bound: Characterization

but, requires proper formalization of $oldsymbol{P}$

Multi-Query Optimization

Computing a set of queries: $\{Q, Q', \ldots\}$


Which queries allow to reuse the distribution obtained for another query?

Transferability

Definition

 $\mathcal{Q} o_T \mathcal{Q}'$ iff \mathcal{Q}' is parallel-correct on every $m{P}$

where Q is parallel-correct on

Characterization

Lemma

 $\mathcal{Q}
ightarrow_T \mathcal{Q}'$ iff

(C2) for every minimal valuation V' for Q' there is a minimal valuation V for \mathcal{Q} , s.t. $V'(\mathsf{body}_{\mathcal{Q}}) \subseteq V(\mathsf{body}_{\mathcal{Q}})$.

Based on query structure alone, not on distribution policies

Complexity

Theorem

Deciding $Q \to_T Q'$ is Π_3^P -complete.

Proof:

- ▶ Lower bound: Reduction from Π_3 -QBF
- ► Upper bound: Characterization

Strongly Minimal CQs

Definition

A CQ is strongly minimal if all its valuations are minimal

- ► Full-CQs
- $T(x,y) \leftarrow R(x,y), R(x,x)$
- ► CQs without self-joins
- $T() \leftarrow R(x, y), S(x, x)$
- Hybrids $T(y) \leftarrow R(x, y), R(x, x), R(z, x), S(z)$

A minimal CQ is not always strongly minimal

Lemma

Deciding whether Q is strongly minimal is coNP-complete

Theorem

Deciding $Q \to_T Q'$ is NP-complete for strongly minimal Q

Hypercube

► Invented in the context of Datalog evaluation

[Ganguli, Silberschatz & Tsur 1990]

Described in Map-Reduce context

[Afrati & Ullman 2010]

► Intensively studied by many people

[Beame, Koutris & Suciu 2014]

Algorithm sketch:

ightharpoonup Reshuffling based on structure of $\mathcal Q$

Partitioning of complete valuations over servers in instance independent way through hashing of domain values

Let $\mathcal{H}(\mathcal{Q})$ be the family of Hypercube distributions for \mathcal{Q} .

Definition

 $\mathcal{Q}
ightarrow_H \mathcal{Q}'$ iff

 \mathcal{Q}' is parallel-correct w.r.t. every $\boldsymbol{P} \in \mathcal{H}(\mathcal{Q})$.

Two properties:

- ► Q-generous: for every valuation facts meet on some node $(\forall P \in \mathcal{H}(Q))$
- ▶ Q-scattered: there is a policy scattering facts in such a way that no facts meet by coincidence $(\forall I)$

Theorem

Deciding whether $Q \rightarrow_H Q'$ is NP-complete

(also when Q or Q' is acyclic)

Conclusion & Future Work

Summary:

Formal framework for reasoning about correctness of query evaluation and optimization in a distributed setting

Based on two concepts:

- ► Parallel-correctness
- ► Transferability

Independent of expression mechanism

(Data-Integration)

(Distributed)

Related Concepts

Containment

 $\mathcal{Q}\subseteq\mathcal{Q}'$

Lemma

Containment and transferability are incomparable

Determinacy

Q'(I) = Q'(J) implies Q(I) = Q(J), for every I, J

Lemma Determinacy and transferability are incomparable

Transferability

$\mathcal{Q} ightarrow_T \mathcal{Q}'$

Future Work

Expression Formalism for distribution policies

► Other than Hypercube?

Distribution policy for set of queries

- ► Given CQ: which distribution policy? Hypercube
- ► Given set of CQs: which distribution policy? Open question

Tractable Results

- ► Other classes of queries?
- ► Other families of distribution policies?

More expressive classes of queries

- ► This work: CQs
- ► FO: undecidable
- ▶ initial results: UCQs, CQs with negation