Negation, Coordination and Monotonicity

Bas Ketsman

Contents of this Talk

- K, Koch. Datalog with Negation and Monotonicity. ICDT 2020
- Baccaert, K. Distributed Consistency Beyond Queries. PODS 2023

Roadmap

- Context
- From Monotone to Negation-Free Queries

Non-rewritable Monotone Queries

Coordination-Freedom and System Knowledge

Open Problems

CALM

Programming asynchronous distributed systems in a declarative language

Algorithm in distributed system

CALM

Declarative Program

Programming asynchronous distributed systems in a declarative language

Algorithm in distributed system

CALM

Declarative Program

Programming asynchronous distributed systems in a declarative language

Algorithm in distributed system

CALM

> Declarative Program

Programming asynchronous distributed systems in a declarative language

Theorem (CALM Theorem)

Monotone Programs = Coordination-Free Programs

- Conjecture: [Hellerstein 2010]
- Proof for queries: [Ameloot, Neven, Van den Bussche 2011]

Formalization

[Ameloot, Neven, Van den Bussche 2011]

- Programs computing queries
- Semantic objects
- data-, network-, partition-independent
- Asynchronous shared-nothing system with at-least once message arrival guarantees
- Write-only output relations
- An algorithm computes a query if the output relations eventually represent the output
- An algorithm is coordination-free if for every network and input database there is an "ideal" data partitioning for which the algorithm generates the query answer before any communication is done.

Formalization

[Ameloot, Neven, Van den Bussche 2011]

- Programs computing queries

Queries

- Semantic objects
- data-, network-, partition-independent
- Asynchronous shared-nothing system with at-least once message arrival guarantees
- Write-only output relations
- An algorithm computes a query if the output relations eventually represent the output
- An algorithm is coordination-free if for every network and input database there is an "ideal" data partitioning for which the algorithm generates the query answer before any communication is done.

Declarative program

Algorithms for asynchronous distributed systems

Query in some declarative language

Algorithms for asynchronous distributed systems

Query in some declarative language

Algorithms for asynchronous distributed systems

Query in some declarative language

Algorithms for asynchronous distributed systems

Query in some declarative language

Algorithms for asynchronous distributed systems

Roadmap

Context

- From Monotone to Negation-Free Queries

Non-rewritable Monotone Queries

Coordination-Freedom and System Knowledge

Open Problems

Algorithms for asynchronous distributed systems

Textbook Datalog

Positive Datalog Program

Pos-Datalog
Pos-Datalog(\neq)
Datalog with Negation

Sp-Datalog

Sp-Datalog (\neq)

Str-Datalog
[Afrati, Cosmadakis, Yannakakis 1995]

Preserved under Homomorphisms

Monotone
Not necessarily Monotone

Semi-Monotone / Preserved under Extensions

Semi-Monotone / Preserved under Extensions

A Monotone Sp-Datalog (\neq) Example

Input: Graph with green (R), blue (S),
and black (T) edges

Sp-Datalog Program P :

$$
\begin{aligned}
\mathrm{T}_{1}(x, y) & \leftarrow \mathrm{R}(x, y), \neg \mathrm{S}(y, z), \mathrm{T}(z, x) . \\
\mathrm{T}_{2}(x, y) & \leftarrow \mathrm{R}(x, y), \mathrm{S}(y, z), \neg \mathrm{T}(z, x) . \\
\mathrm{O}() & \leftarrow \mathrm{T}_{1}(x, y), \mathrm{T}_{2}(x, y) . \\
\mathrm{O}() & \leftarrow \mathrm{R}(x, y), \mathrm{S}(y, z), \mathrm{T}(z, x), x \neq y .
\end{aligned}
$$

Output: Binary output relation O

A Monotone Sp-Datalog (\neq) Example

Input: Graph with green (R), blue (S), and black (T) edges

Sp-Datalog Program P :

$$
\begin{aligned}
\mathrm{T}_{1}(x, y) & \leftarrow \mathrm{R}(x, y), \neg \mathrm{S}(y, z), \mathrm{T}(z, x) . \\
\mathrm{T}_{2}(x, y) & \leftarrow \mathrm{R}(x, y), \mathrm{S}(y, z), \neg \mathrm{T}(z, x) . \\
\mathrm{O}() & \leftarrow \mathrm{T}_{1}(x, y), \mathrm{T}_{2}(x, y) . \\
\mathrm{O}() & \leftarrow \mathrm{R}(x, y), \mathrm{S}(y, z), \mathrm{T}(z, x), x \neq y .
\end{aligned}
$$

Output: Binary output relation O

Naive Rewriting: Remove Negated Atoms

Input: Graph with green (R), blue (S), and black (T) edges

Sp-Datalog Program P :

$$
\begin{aligned}
\mathrm{T}_{1}(x, y) & \leftarrow \mathrm{R}(x, y), 7 \mathrm{~S}(y, z), \mathrm{T}(z, x) . \\
\mathrm{T}_{2}(x, y) & \leftarrow \mathrm{R}(x, y), \mathrm{S}(y, z), 7 \mathrm{~T} . \\
\mathrm{O}() & \leftarrow \mathrm{T}_{1}(x, y), \mathrm{T}_{2}(x, y) . \\
\mathrm{O}() & \leftarrow \mathrm{R}(x, y), \mathrm{S}(y, z), \mathrm{T}(z, x), x \neq y .
\end{aligned}
$$

Output: Binary output relation O

Candidate Proof-Trees with Fringe-Conflicts

(Proof-trees decoupled from a particular database instance)

Proof-tree for P^{+}

Candidate Proof-Trees with Fringe-Conflicts

(Proof-trees decoupled from a particular database instance)

Proof-tree for P^{+}

Candidate Proof-Trees with Fringe-Conflicts

(Proof-trees decoupled from a particular database instance)

Proof-tree for P^{+}

Candidate proof-tree ${ }^{a}$ for P with fringe conflicts
(${ }^{a}$ In paper: candidate proof-tree without inequality conflicts)

Proof-Tree Perspective

Theorem

For monotone Sp-Datalog conflict-free (\neq) programs whose candidate proof-trees are without fringe conflicts, negated atoms can be left away without influencing the program semantics.

Making Programs Conflict-Free

Crux: Pass information about forbidden facts to other rules via IDBs and exclude conflicts via disequalities

$$
\begin{aligned}
\mathrm{T}_{1}(x, y) & \leftarrow \mathrm{R}(x, y), \neg \mathrm{S}(y, z), \mathrm{T}(z, x) . \\
\mathrm{T}_{2}(x, y) & \leftarrow \mathrm{R}(x, y), \mathrm{S}(y, z), \neg \mathrm{T}(z, x) . \\
\mathrm{O}() & \leftarrow \mathrm{T}_{1}(x, y), \mathrm{T}_{2}(x, y) . \\
\mathrm{O}() & \leftarrow \mathrm{R}(x, y), \mathrm{S}(y, z), \mathrm{T}(z, x), x \neq y .
\end{aligned}
$$

Making Programs Conflict-Free

Crux: Pass information about forbidden facts to other rules via IDBs and exclude conflicts via disequalities

$$
\begin{aligned}
\mathrm{T}_{1}(x, y, y, z) & \leftarrow \mathrm{R}(x, y), \neg \mathrm{S}(y, z), \mathrm{T}(z, x) . \\
\mathrm{T}_{2}(x, y) & \leftarrow \mathrm{R}(x, y), \mathrm{S}(y, z), \neg \mathrm{T}(z, x) . \\
\mathrm{O}() & \leftarrow \mathrm{T}_{1}\left(x, y, y^{\prime}, z^{\prime}\right), \mathrm{T}_{2}(x, y) . \\
\mathrm{O}() & \leftarrow \mathrm{R}(x, y), \mathrm{S}(y, z), \mathrm{T}(z, x), x \neq y .
\end{aligned}
$$

Making Programs Conflict-Free

Crux: Pass information about forbidden facts to other rules via IDBs and exclude conflicts via disequalities

$$
\begin{aligned}
\text { Adom }(x) & \leftarrow \text { "active domain of } R, S, \text { and } T " \\
\mathrm{~T}_{1}(x, y, y, z) & \leftarrow \mathrm{R}(x, y), \neg \mathrm{S}(y, z), \mathrm{T}(z, x) . \\
\mathrm{T}_{2}\left(x, y, y^{\prime}, z^{\prime}\right) & \leftarrow \mathrm{R}(x, y), \mathrm{S}(y, z), \neg \mathrm{T}(z, x), \operatorname{Adom}\left(y^{\prime}\right), \operatorname{Adom}\left(z^{\prime}\right) . \\
\mathrm{O}() & \leftarrow \mathrm{T}_{1}\left(x, y, y^{\prime}, z^{\prime}\right), \mathrm{T}_{2}\left(x, y, y^{\prime}, z^{\prime}\right) . \\
\mathrm{O}() & \leftarrow \mathrm{R}(x, y), \mathrm{S}(y, z), \mathrm{T}(z, x), x \neq y .
\end{aligned}
$$

Making Programs Conflict-Free

Crux: Pass information about forbidden facts to other rules via IDBs and exclude conflicts via disequalities

Adom $(x) \leftarrow$ "active domain of R, S, and T "

$$
\begin{aligned}
\mathrm{T}_{1}(x, y, y, z) & \leftarrow \mathrm{R}(x, y), \neg \mathrm{S}(y, z), \mathrm{T}(z, x) . \\
\mathrm{T}_{2}\left(x, y, y^{\prime}, z^{\prime}\right) & \leftarrow \mathrm{R}(x, y), \mathrm{S}(y, z), \neg \mathrm{T}(z, x), \operatorname{Adom}\left(y^{\prime}\right), \operatorname{Adom}\left(z^{\prime}\right), y \neq y^{\prime} . \\
\mathrm{T}_{2}\left(x, y, y^{\prime}, z^{\prime}\right) & \leftarrow \mathrm{R}(x, y), \mathrm{S}(y, z), \neg \mathrm{T}(z, x), \operatorname{Adom}\left(y^{\prime}\right), \operatorname{Adom}\left(z^{\prime}\right), z \neq z^{\prime} . \\
\mathrm{O}() & \leftarrow \mathrm{T}_{1}\left(x, y, y^{\prime}, z^{\prime}\right), \mathrm{T}_{2}\left(x, y, y^{\prime}, z^{\prime}\right) . \\
\mathrm{O}() & \leftarrow \mathrm{R}(x, y), \mathrm{S}(y, z), \mathrm{T}(z, x), x \neq y .
\end{aligned}
$$

Making Programs Conflict-Free

Crux: Pass information about forbidden facts to other rules via IDBs and exclude conflicts via disequalities

Adom $(x) \leftarrow$ "active domain of R, S, and T "

$$
\begin{aligned}
\mathrm{T}_{1}(x, y, y, z) & \leftarrow \mathrm{R}(x, y), \neg \mathrm{S}(y, z), \mathrm{T}(z, x) . \\
\mathrm{T}_{2}\left(x, y, y^{\prime}, z^{\prime}\right) & \leftarrow \mathrm{R}(x, y), \mathrm{S}(y, z), \neg \mathrm{T}(z, x), \operatorname{Adom}\left(y^{\prime}\right), \operatorname{Adom}\left(z^{\prime}\right), y \neq y^{\prime} . \\
\mathrm{T}_{2}\left(x, y, y^{\prime}, z^{\prime}\right) & \leftarrow \mathrm{R}(x, y), \mathrm{S}(y, z), \neg \mathrm{T}(z, x), \operatorname{Adom}\left(y^{\prime}\right), \operatorname{Adom}\left(z^{\prime}\right), z \neq z^{\prime} . \\
\mathrm{O}() & \leftarrow \mathrm{T}_{1}\left(x, y, y^{\prime}, z^{\prime}\right), \mathrm{T}_{2}\left(x, y, y^{\prime}, z^{\prime}\right) . \\
\mathrm{O}() & \leftarrow \mathrm{R}(x, y), \mathrm{S}(y, z), \mathrm{T}(z, x), x \neq y .
\end{aligned}
$$

Making Programs Conflict-Free

Crux: Pass information about forbidden facts to other rules via IDBs and exclude conflicts through disequalities

$$
\begin{aligned}
\operatorname{Adom}(x) & \leftarrow \text { "active domain of } R, S, \text { and } T^{\prime \prime} \\
\mathrm{T}_{1}\left(x, y, y, z, z^{\prime \prime}, x^{\prime \prime}\right) & \leftarrow \mathrm{R}(x, y), \neg \mathrm{S}(y, z), \mathrm{T}(z, x), \operatorname{Adom}\left(z^{\prime \prime}\right), \operatorname{Adom}\left(x^{\prime \prime}\right), z \neq z^{\prime \prime} . \\
\mathrm{T}_{1}\left(x, y, y, z, z^{\prime \prime}, x^{\prime \prime}\right) & \leftarrow \mathrm{R}(x, y), \neg \mathrm{S}(y, z), \mathrm{T}(z, x), \operatorname{Adom}\left(z^{\prime \prime}\right), \operatorname{Adom}\left(x^{\prime \prime}\right), x \neq x^{\prime \prime} . \\
\mathrm{T}_{2}\left(x, y, y^{\prime}, z^{\prime}, z, x\right) & \leftarrow \mathrm{R}(x, y), \mathrm{S}(y, z), \neg \mathrm{T}(z, x), \operatorname{Adom}\left(y^{\prime}\right), \operatorname{Adom}\left(z^{\prime}\right), y \neq y^{\prime} . \\
\mathrm{T}_{2}\left(x, y, y^{\prime}, z^{\prime}, z, x\right) & \leftarrow \mathrm{R}(x, y), \mathrm{S}(y, z), \neg \mathrm{T}(z, x), \operatorname{Adom}\left(y^{\prime}\right), \operatorname{Adom}\left(z^{\prime}\right), z \neq z^{\prime} . \\
\mathrm{O}() & \leftarrow \mathrm{T}_{1}\left(x, y, y^{\prime}, z^{\prime}, z^{\prime \prime}, x^{\prime \prime}\right), \mathrm{T}_{2}\left(x, y, y^{\prime}, z^{\prime}, z^{\prime \prime}, x^{\prime \prime}\right) . \\
\mathrm{O}() & \leftarrow \mathrm{R}(x, y), \mathrm{S}(y, z), \mathrm{T}(z, x), x \neq y .
\end{aligned}
$$

Equivalent to original program and candidate proof-trees have no fringe conflicts

Making Programs Conflict－Free

Crux：Pass information about forbidden facts to other rules via IDBs and exclude conflicts with disequalities

$$
\begin{aligned}
& \text { Adom }(x) \leftarrow \text { "active domain of } R, S \text {, and } T \text { " } \\
& \mathrm{T}_{1}\left(x, y, y, z, z^{\prime \prime}, x^{\prime \prime}\right) \leftarrow \mathrm{R}(x, y) \text {, 工s (y,z), } \mathrm{T}(z, x), \operatorname{Adom}\left(z^{\prime \prime}\right), \operatorname{Adom}\left(x^{\prime \prime}\right), z \neq z^{\prime \prime} . \\
& \left.\mathrm{T}_{1}\left(x, y, y, z, z^{\prime \prime}, x^{\prime \prime}\right) \leftarrow \mathrm{R}(x, y), \text { ㄱsy,z}\right), ~ \mathrm{~T}(z, x), \operatorname{Adom}\left(z^{\prime \prime}\right), \operatorname{Adom}\left(x^{\prime \prime}\right), x \neq x^{\prime \prime} \text {. } \\
& \mathrm{T}_{2}\left(x, y, y^{\prime}, z^{\prime}, z, x\right) \leftarrow \mathrm{R}(x, y), \mathrm{S}(y, z) \text {, 工甲), } \operatorname{Adom}\left(y^{\prime}\right), \operatorname{Adom}\left(z^{\prime}\right), y \neq y^{\prime} . \\
& \mathrm{T}_{2}\left(x, y, y^{\prime}, z^{\prime}, z, x\right) \leftarrow \mathrm{R}(x, y), \mathrm{S}(y, z) \text {, 工开, } \operatorname{Adom}\left(y^{\prime}\right), \operatorname{Adom}\left(z^{\prime}\right), z \neq z^{\prime} \text {. } \\
& \mathrm{O}() \leftarrow \mathrm{T}_{1}\left(x, y, y^{\prime}, z^{\prime}, z^{\prime \prime}, x^{\prime \prime}\right), \mathrm{T}_{2}\left(x, y, y^{\prime}, z^{\prime}, z^{\prime \prime}, x^{\prime \prime}\right) . \\
& \mathrm{O}() \leftarrow \mathrm{R}(x, y), \mathrm{S}(y, z), \mathrm{T}(z, x), x \neq y .
\end{aligned}
$$

Equivalent to original program，even without negated atoms

Negation-Bounded Datalog

When does such a rewriting exist?

Negation-Bounded Datalog

When does such a rewriting exist?

- For all programs with a bounded number of forbidden facts in their proof-tree fringes;
- [K, Koch, 2020]
- For all programs with a bounded number of required facts in their proof-tree fringes.
- Symmetric case
- For all programs without non-equalities
- Because Sp-Datalog \cap Monotone $=$ Sp-Datalog \cap Hom
- Sp-Datalog \cap Hom = Pos-Datalog [Feder, Vardi, 2003]

Roadmap

- Context
- From Monotone to Negation-Free Queries
- Non-rewritable Monotone Queries

Coordination-Freedom and System Knowledge

Open Problems

Counterexample Ingredients

Heavily based on: [Rudolph, Thomazo 2015]

Definition

Given a graph, the perfect matching problem asks if there is a subset M of its edges such that every vertex of the graph is incident to precisely one edge in M.

- A polynomial-time computable query.
- All polynomial-time computable queries are expressible in order-invariant SP-datalog

> [Papadimitriou 1985]

- Succ[2] encoding some linear order over adom;
- Min[1] and Max[1] denoting minimal and maximal element.

Separating Query

Input: instance over \{Edge[2], Succ[2], Min[1], Max[1]\}.

Output:

- True if Succ, Min, Max encode an inconsistency
- True if Succ, Min, Max contain a complete total order and the graph induced by the active domain elements between Min and Max in Next has a perfect matching.
- False (\emptyset) otherwise.

Sp-Datalog (\neq) query | monotone

Separating Query

Input: instance over \{Edge[2], Succ[2], Min[1], Max[1]\}.

Output:

- True if Succ, Min, Max encode an inconsistency
- Some negation-free rules
- True if Succ, Min, Max contain a complete total order and the graph induced by the active domain elements between Min and Max in Next has a perfect matching.
- Some negation-free rules + order invariant SP-Datalog program with Succ, Min, Max given as part of input
- False (\emptyset) otherwise.

Sp-Datalog (\neq) query | monotone

Separating Query

Input: instance over \{Edge[2], Succ[2], Min[1], Max[1]\}.

Output:

- True if Succ, Min, Max encode an inconsistency
- Some negation-free rules
- We cannot fix such an inconsistency by adding more facts
- True if Succ, Min, Max contain a complete total order and the graph induced by the active domain elements between Min and Max in Next has a perfect matching.
- Some negation-free rules + order invariant SP-Datalog program with Succ, Min, Max given as part of input
- We cannot undo existence of a perfect matching by adding more facts
- False (\emptyset) otherwise.

Sp-Datalog (\neq) query | monotone

Separating Query \notin Pos-Datalog (\neq)

Theorem ([Razborov 85])

No family of monotone Boolean circuits exists that answer the perfect matching problem and has circuits of polynomial size in the number of input gates.

Claim: If there is a Pos-Datalog (\neq) program P expressing the separating query, then there is a Boolean circuit contradicting the above result.

Proof by construction

For a graph with v vertices, consider a Boolean circuit with v^{2} input gates, one per possible edge. The gate is set to 1 iff the edge is in the graph.

1. Consider all groundings of rules in P over domain $\{1, \ldots, v\}$.
2. Assume natural order over these values as interpretation for First, Last, Next and remove all grounded rules that contradict with it.
3. Remove all facts over interpreted relation names.
4. Make copies of rules organized in strata. First strata copies all EDBS to index 0 . For next stratum all atoms in body have index i and those in heads have index $i+1$. We need only as many strata as we need rounds to finish programs over domain $\{1 \ldots v\}$.
5. EDB atoms = input gates, rules are AND gates whose inputs are the gates whose output represents body atoms; IDBs become OR gates whose inputs are the gates represented by rules that produce the ground atoms.

Roadmap

- Context
- From Monotone to Negation-Free Queries

Non-rewritable Monotone Queries

- Coordination-Freedom and System Knowledge

Open Problems

A More Fine-Grained Answer to the CALM Conjecture

Systems in which data is arbitrarily partitioned.
Theorem ([Ameloot, Neven, Van den Bussche, 2011])
$\mathcal{C}_{q}(\mathrm{Id}+\mathrm{All}) \cap$ Coordination-Free $=$ Monotone

A More Fine-Grained Answer to the CALM Conjecture

Systems in which data is arbitrarily partitioned.

Theorem ([Ameloot, Neven, Van den Bussche, 2011])

$\mathcal{C}_{q}(\mathrm{Id}+\mathrm{All}) \cap$ Coordination-Free $=$ Monotone

Systems in which data is partitioned using a tuple-based policy.

- For every possible tuple in the database there is a node that knows it would store that tuple if it were part of the database

Theorem ([Ameloot, K, Neven, Zinn, 2014])
$\mathcal{C}_{q}($ Id $+\mathrm{All}+$ Policy $) \cap$ Coordination-Free $=$ Semi-Monotone

A More Fine-Grained Answer to the CALM Conjecture

Systems in which data is arbitrarily partitioned.

Theorem ([Ameloot, Neven, Van den Bussche, 2011])

$\mathcal{C}_{q}(\mathrm{Id}+\mathrm{All}) \cap$ Coordination-Free $=$ Monotone

Theorem ([Ameloot, K, Neven, Zinn, 2014])

$\mathcal{C}_{q}(\mathrm{Id}+\mathrm{All}+$ Policy $) \cap$ Coordination-Free $=$ Semi-Monotone
Systems in which data is partitioned using a value-based strategy.

- For every possible data value in the database there is a node that knows it would store all tuples in the database containing that data value.

Theorem ([Ameloot, K, Neven, Zinn, 2014])

$\mathcal{C}_{q}($ Id + All + AdomPolicy $) \cap$ Coordination-Free $=$ Disjoint-Monotone

From Queries to Behaviors

Definition

A distributed behavior is a non-deterministic mapping from distributed instances to distributed instances

From Queries to Behaviors

Definition

A distributed behavior is a non-deterministic mapping from distributed instances to distributed instances

(Queries are specific types of distributed behaviors)

Configuration Constraints

Information made available to nodes in the form of interpreted relations or functions defined as a behavior.

Configuration Constraints

Information made available to nodes in the form of interpreted relations or functions defined as a behavior.
[Ameloot, Neven, Van den Bussche 2011]

- Id: relation containing the unique ID of the node at hand;
- All: relation containing all IDs of nodes in the network;

Configuration Constraints

Information made available to nodes in the form of interpreted relations or functions defined as a behavior.
[Ameloot, Neven, Van den Bussche 2011]

- Id: relation containing the unique ID of the node at hand;
- All: relation containing all IDs of nodes in the network;
[Ameloot, K, Neven, Zinn 2014]
- Policy: function mapping a fact to true iff the node is responsible for it;
- AdomPolicy: similar as previous but based on data values of tuples;

Configuration Constraints

Information made available to nodes in the form of interpreted relations or functions defined as a behavior. [Ameloot, Neven, Van den Bussche 2011]

- Id: relation containing the unique ID of the node at hand;
- All: relation containing all IDs of nodes in the network;

[Ameloot, K, Neven, Zinn 2014]

- Policy: function mapping a fact to true iff the node is responsible for it;
- AdomPolicy: similar as previous but based on data values of tuples;

Many other options:

- L: relation containing the ID of some node considered leader in the network;
- Order: function mapping two data values a, b on true iff $a<b$ according to some coordinated order.
- ...
(can be combined)

Computing Behaviors

Is a certain behavior computable in our model for a specific set of constraints?
Is leader election computable without configuration constraints?

Computing Behaviors

Is a certain behavior computable in our model for a specific set of constraints?

Is leader election computable with Id?

Computing Behaviors

Is a certain behavior computable in our model for a specific set of constraints?
Is leader election computable with Id + All?

Computing Behaviors

Is a certain behavior computable in our model for a specific set of constraints? Is leader election computable with Id + All + Order?

Computing Behaviors

Definition

$\mathcal{C}(\chi)=$ the set of all behaviors computable in the model with constraint χ.

- $\mathcal{C}($ Id + All $)$ contains all (computable) queries;
- $\mathcal{C}($ Id + All + Order $)$ equals all (computable) behaviors;

Coordination-Freedom for Behaviors

Definition

An algorithm is coordination-free if for some (ideal) partitioning of the input data, the algorithm finds the correct output before doing any communication.

Coordination-Freedom for Behaviors

Definition

An algorithm is coordination-free if for some (ideal) partitioning of the input data, the algorithm finds the correct output before doing any communication.

This definition only makes sense for behaviors that are data-partitioning independent**

Semantics Versus Syntactic Transducers

Coordination-Free computability = Computability in restricted variant of the model.

Theorem ([Ameloot, Neven, Van den Bussche, 2011])

- $\mathcal{C}_{\text {queries }}(\mathrm{Id}+\mathrm{All}) \cap$ Coordination-Free $=\mathcal{C}_{\text {queries }}(\mathrm{Id})$

Coordination Free $=$ Ability to compute without access to All.

Semantics Versus Syntactic Transducers

Coordination-Free computability $=$ Computability in restricted variant of the model.

Theorem ([Ameloot, Neven, Van den Bussche, 2011])

- $\mathcal{C}_{\text {queries }}(\mathrm{Id}+\mathrm{All}) \cap$ Coordination-Free $=\mathcal{C}_{\text {queries }}(\mathrm{Id})$

Theorem ([Ameloot, K, Neven, Zinn, 2014])

- $\mathcal{C}_{\mathrm{q}}($ Id $+\mathrm{All}+$ Policy $) \cap$ Coordination-Free $=\mathcal{C}_{\mathrm{q}}($ Id + Policy $)$
$-\mathcal{C}_{\mathrm{q}}(\mathrm{Id}+\mathrm{All}+$ AdomPolicy $) \cap$ Coordination-Free $=\mathcal{C}_{\mathrm{q}}($ Id + AdomPolicy $)$

Coordination Free $=$ Ability to compute without access to All.

Coordination / Computability

Definition

We call a behavior coordinating-free if it is in the set $\mathcal{C}(I d+0 r d)$

Definition

We call a behavior weakly coordinating if it is in a set \mathcal{C} (Id + Something) with property that there is no termination-aware algorithm to compute All.
$\mathcal{C}(\operatorname{Id}+\mathrm{All}+$ Order $)=$ All behaviors

Monotone Behaviors?

Theorem
$\mathcal{C}(\operatorname{Id}+\operatorname{Ord}+\chi)=$ all χ-monotone behaviors.
Details in [Baccaert, K, 2023]

Monotone Behaviors?

Example:

- Consider the query that takes a graph as input and asks if the graph as an isolated edge.
- Consider $\chi=$ Id + Policy + Min + Max + Ord as configuration constraints

Monotone Behaviors?

Example:

- Consider the query that takes a graph as input and asks if the graph as an isolated edge.
- Consider $\chi=\operatorname{Id}+$ Policy $+\operatorname{Min}+\operatorname{Max}+$ Ord as configuration constraints

$$
E(1,2) \quad E(4,5)
$$

Output: True

Monotone Behaviors?

Example:

- Consider the query that takes a graph as input and asks if the graph as an isolated edge.
- Consider $\chi=\operatorname{Id}+$ Policy $+\operatorname{Min}+\operatorname{Max}+$ Ord as configuration constraints

$$
\begin{array}{cr}
E(1,2) & E(4,5) \\
\operatorname{id}(1) & \operatorname{id}(3) \\
\{(1,2),(2,1),(1,3),(3,1), & \{(2,4),(4,2),(2, \\
(1,4),(4,1),(1,5),(5,1), \ldots\} & (4,5),(5,4), \\
\mathbf{1} \leq 2 \leq 3 \leq 4 \leq \mathbf{5} & \mathbf{1} \leq 2 \leq 3 \leq 4
\end{array}
$$

Output: True

Monotone Behaviors?

Example:

- Consider the query that takes a graph as input and asks if the graph as an isolated edge.
- Consider $\chi=$ Id + Policy $+\operatorname{Min}+$ Max + Ord as configuration constraints

$$
\begin{array}{ccc}
E(1,2) & E(2,3) E(3,4) & E(4,5) \\
\operatorname{id}(1) & \operatorname{id}(2) & \operatorname{id}(3) \\
\{(1,2),(2,1),(1,3),(3,1), & \{(2,3),(3,2),(3,4),(4,3) & \{(2,4),(4,2),(2,5),(5,2) \\
(1,4),(4,1),(1,5),(5,1), \ldots\} & (3,5),(5,3), \ldots\} & (4,5),(5,4), \ldots\} \\
\mathbf{1} \leq 2 \leq 3 \leq 4 \leq \mathbf{5} & \mathbf{1} \leq 2 \leq 3 \leq 4 \leq \mathbf{5} & \mathbf{1} \leq 2 \leq 3 \leq 4 \leq \mathbf{5}
\end{array}
$$

Output: False

Monotone Behaviors?

Example:

- Consider the query that takes a graph as input and asks if the graph as an isolated edge.
- Consider $\chi=$ Id + Policy $+\operatorname{Min}+$ Max + Ord as configuration constraints

$$
\begin{array}{ccc}
E(1,2) & E(2,3) E(3,4) & E(4,5) \\
\operatorname{id}(1) & \operatorname{id}(2) & \operatorname{id}(3) \\
\{(1,2),(2,1),(1,3),(3,1), & \{(2,3),(3,2),(3,4),(4,3) & \{(2,4),(4,2),(2,5),(5,2) \\
(1,4),(4,1),(1,5),(5,1), \ldots\} & (3,5),(5,3), \ldots\} & (4,5),(5,4), \ldots\} \\
\mathbf{1} \leq 2 \leq 3 \leq 4 \leq \mathbf{5} & \mathbf{1} \leq 2 \leq 3 \leq 4 \leq \mathbf{5} & \mathbf{1} \leq 2 \leq 3 \leq 4 \leq \mathbf{5}
\end{array}
$$

Output: False
\Rightarrow The isolated edge query is not χ-monotone \Rightarrow not in $\mathcal{C}(\chi)$

An Overview

Roadmap

- Context
- From Monotone to Negation-Free Queries
- Non-rewritable Monotone Queries
- Coordination-Freedom and System Knowledge
- Open Problems

Open Questions

- Are there other techniques to eliminate negation in monotone Datalog programs?
- Is there an elegant semantic definition of coordination-freedom for behaviors that matches our definition based on the All relation?
- The definitions of behavior and constraint are all semantic, are there suitable languages that can be used to define them in a more elegant way?

More information: bas.ketsman@vub.be

