
Single-Round Multi-Join
Evaluation

Bas Ketsman



Outline

1. Introduction

2. Parallel-Correctness

3. Transferability

4. Special Cases

2



Motivation

Single-round Multi-joins
▶ Less rounds / barriers

Formal framework for reasoning about distributed query
evaluation and optimization

3



Building Block
1-Round MPC model [Koutris & Suciu 2011]

Modeled by a
partitioning policy P

Global instance: I

Local instances: I1 I2 I3

Local outputs: Q(I1) Q(I2) Q(I3)

Q Q Q

Data partitioning

Q(I1) ∪Q(I2) ∪Q(I3)

Query Q

Global output:

4



Main Questions: Question 1

Given target query and a distribution policy:

Does the simple algorithm work?

Parallel-Correctness

“Is query parallel-correct for current distribution policy?”

▶ If yes:
No data reshuffling needed!

▶ If no:
Choose one that works and reshuffle.
future work : Which one is cheapest to obtain?

5



Main Questions: Question 2
It may be unpractical to reason about distribution policies

- Sometimes complex to reason about
- May be hidden behind abstraction layer
- May not have been chosen yet

Given target query and previously computed query:

Do we need to reshuffle?

Parallel-Correctness Transferability

“Given Q1,Q2: in which order to compute?”

▶ If transferability from Q1 to Q2:
Compute Q1 first, then Q2 for free!

6



Outline

1. Introduction

2. Parallel-Correctness

3. Transferability

4. Special Cases

7



Distribution Policies
Network N is a finite set of machines [Zinn et all. 2013]

all R-facts all S-facts

P

Definition
A distribution policy P is a total function mapping facts (over
dom) to sets of machines in N

▶ Based on granularity of facts
▶ No context
▶ Obtainable in distributed fashion

8



Distribution Policies
Network N is a finite set of machines [Zinn et all. 2013]

all R-facts all S-facts

P

{R(a, b), R(b, a)} {S(a)}

distP ,I(1)

distP ,I(2)

= distribution of I based on P

Instance I = {R(a, b), R(b, a), S(a)}

9



Example Policy: Hypercube

[Afrati & Ullman 2010, Beame, Koutris & Suciu 2014]

a

b

R(a, b)

(x, y, z)← R(x, y), S(y, z), T (z, x)

Partitioning of complete valuations
over machines in instance indepen-
dent way through hashing of domain
values

10



Simple Evaluation Algorithm

Global instance: I

Local instances: I1 I2 I3

Local outputs: Q(I1) Q(I2) Q(I3)

Q Q Q

Data partitioning

Q(I1) ∪Q(I2) ∪Q(I3)Global output:

Notation

[Q, P ](I) =
∪

κ∈N
Q(distP ,I(κ))

11



Parallel-Correctness

Definition
Q is parallel-correct on I w.r.t. P , iff [Q, P ](I) = Q(I)

Definition (w.r.t. all instances)
Q is parallel-correct w.r.t. P iff
Q is parallel-correct w.r.t. P on every I

12



Conjunctive Queries

Conjunctive Query:
Existentially quantified conjunction of relational atoms

T (x̄)︸ ︷︷ ︸
headQ

← R1(ȳ1), . . . , Rm(ȳm)︸ ︷︷ ︸
bodyQ

Valuations: V = mapping from variables to domain elements

If V (bodyQ) ⊆ I then output V (headQ).

CQs are monotone (Q(I) ⊆ Q(I ∪ J)∀I, J):
▶ CQs are parallel-sound on every P

▶ parallel-correct iff parallel-complete

[Q, P ](I) = Q(I), ∀I iff Q(I) ⊆ [Q, P ](I),∀I

13



Parallel-Correctness
Sufficient Condition

(PC0) for every valuation V for Q,∩
f∈V (bodyQ)

P (f) ̸= ∅.

Intuition: Facts required by a valuation meet at some machine

Lemma
(PC0) implies Q parallel-correct w.r.t. P .

Not necessary

14



(PC0) not Necessary
Example

Distribution policy P

all − {R(a, b)}
all − {R(b, a)}

Query Q: T (x, z)← R(x, y), R(y, z), R(x, x)

V = {x, z → a, y → b}
Requires:

R(a, b) R(b, a) R(a, a)

Derives:

T (a, a)

R(a, b) R(b, a) R(a, a)

Do not meet

V ′ = {x, y, z → a}
Requires:

R(a, a)

Derives:

T (a, a)

⊋

=

15



Parallel-Correctness
Characterization

Lemma
Q is parallel-correct w.r.t. P iff
(PC1) for every minimal valuation V for Q,∩

f∈V (bodyQ)
P (f) ̸= ∅.

Definition
V is minimal if no V ′ exists, where
V ′(headQ) = V (headQ), V ′(bodyQ) ⊊ V (bodyQ).

16



Parallel-Correctness
Example

Query Q: T (x, z)← R(x, y), R(y, z), R(x, x)

V = {x, z → a, y → b}
Requires:

R(a, b) R(b, a) R(a, a)

Derives:

T (a, a)

V ′ = {x, y, z → a}
Requires:

R(a, a)

Derives:

T (a, a)

⊋

=

Minimal

Notice: Q is minimal CQ

CQ is minimal iff injective valuations are minimal

Proposition
Testing whether a valuation is minimal is coNP-complete.

17



Parallel-Correctness
Complexity

Theorem
Deciding whether Q is parallel-correct w.r.t. P is
ΠP

2 -complete.

Proof:
▶ Lower bound: Reduction from Π2-QBF
▶ Upper bound: (PC1)

but, requires proper formalization of P

18



Parallel-Correctness: Complexity

CQ · · · CQ{≠,∪}
Pfin Πp

2-c Πp
2-c

Penum Πp
2-c Πp

2-c
Pk

nondet Πp
2-c Πp

2-c

Robust under adding inequalities and union

Inequalities:

T (x̄)← R1(ȳ1), . . . , Rm(ȳm), x ̸= y, y ̸= z

Union:

Q = {Q1, . . . ,Qk},

with headQ1 , . . . , headQk
over same relation.

19



Safe Negation

T (x̄)︸ ︷︷ ︸
headQ

← R1(ȳ1), . . . , Rm(ȳm)︸ ︷︷ ︸
posQ

,¬S1(z̄1), . . . ,¬Sk(z̄k)︸ ︷︷ ︸
negQ

with vars(negQ) ⊆ vars(posQ).

In general:

{¬} · · · {¬,∪, ̸=}
Penum coNEXP-c coNEXP-c
Pk

nondet coNEXP-c coNEXP-c

Surprisingly we found this via CQ¬ containment!!

20



Containment

We thought Π2
p completeness of CQ¬ containment was folklore

Theorem
In general, containment for CQ¬ is coNEXPTIME-complete

Proof:
▶ Lower bound: succinct 3-colorability
▶ Upper bound: guess instances over bounded domain

21



Outline

1. Introduction

2. Parallel-Correctness

3. Transferability

4. Special Cases

22



Computing Multiple Queries
I

Q Q Q

RedistributionQ →

Q(I)←

I

Q′ Q′ Q′

RedistributionQ′ →

Q′(I)←

…

23



Computing Multiple Queries
I

Q Q Q

RedistributionQ →

Q(I)←

Q′ Q′ Q′

Q′ →

Q′(I)←

When can Q′ be evaluated on data partitioning used for Q?
No reshuffling

…

24



Transferability

Definition
Q →T Q′ iffQ′ is parallel-correct on every P whereQ is parallel-
correct on

Example
Q : T ()← R(x, y), R(y, z), R(z, w)

Q′ : N()← R(x, y), R(y, x)a b c d

a b c

a b a

a b a

Q →T Q′

25



Transferability
Characterization & Complexity

Lemma
Q →T Q′ iff
(C2) for every minimal valuation V ′ for Q′ there is a minimal
valuation V for Q, s.t.

V ′(bodyQ′) ⊆ V (bodyQ).

26



Transferability
Characterization & Complexity

Lemma
Q →T Q′ iff
(C2) for every minimal valuation V ′ for Q′ there is a minimal
valuation V for Q, s.t.

V ′(bodyQ′) ⊆ V (bodyQ).

Theorem
Deciding Q →T Q′ is ΠP

3 -complete.

▶ Lower bound: Reduction from Π3-QBF
▶ Upper bound: Characterization

Based on query structure alone, not on distribution policies

27



Outline

1. Introduction

2. Parallel-Correctness

3. Transferability

4. Special Cases

28



Hypercube

Algorithm:
▶ Reshuffling based on structure of Q

H(Q) = family of Hypercube policies for Q.

Definition
Q →H Q’ iff
Q′ is parallel-correct w.r.t. every P ∈ H(Q).

29



Hypercube

Two properties:

▶ Q-generous: for every valuation facts meet on some
machine (∀P ∈ H(Q))

▶ Q-scattered: there is a policy scattering facts in such a
way that no facts meet by coincidence (∀I)

Theorem
Deciding whether Q →H Q′ is NP-complete

(also when Q or Q′ is acyclic)

30



Tractable results future work
▶ Queries classes
▶ Concrete families of distribution policies

(some other special cases in [AGKNS 2011])

Hybrid techinques / Tradeoffs future work
▶ Single-round Multi-join vs multi-rounds?
▶ Combining queries vs sequential distributed evaluation?

31



Joint work with

Tom Ameloot, Gaetano Geck, Frank Neven and Thomas Schwentick

▶ Parallel-Correctness and Transferability for Conjunctive Queries, PODS
2015.

▶ Technical report: http://arxiv.org/abs/1412.4030
▶ Parallel-Correctness and Containment for Conjunctive Queries with

Union and Negation, ICDT 2016.
▶ Data partitioning for single-round multi-join evaluation in massively

parallel systems, Sigmod Record 2016 (not yet published).

32


	Introduction
	Parallel-Correctness
	Transferability
	Special Cases

