Single-Round Multi-Join Evaluation

Bas Ketsman

Outline

- 1. Introduction
- 2. Parallel-Correctness
- 3. Transferability
- 4. Special Cases

Motivation

Single-round Multi-joins

► Less rounds / barriers

Formal framework for reasoning about distributed query evaluation and optimization

Building Block

Main Questions: Question 1

Given target query and a distribution policy:

Does the simple algorithm work?

Parallel-Correctness

"Is query parallel-correct for current distribution policy?"

► If yes:

No data reshuffling needed!

► If no:

Choose one that works and reshuffle.

future work : Which one is cheapest to obtain?

Main Questions: Question 2

It may be unpractical to reason about distribution policies

- Sometimes complex to reason about
- May be hidden behind abstraction layer
- May not have been chosen yet

Given target query and previously computed query:

Do we need to reshuffle?

Parallel-Correctness Transferability

"Given Q_1, Q_2 : in which order to compute?"

► If transferability from Q₁ to Q₂: Compute Q₁ first, then Q₂ for free!

Outline

- 1. Introduction
- 2. Parallel-Correctness
- 3. Transferability
- 4. Special Cases

Distribution Policies

Definition

A distribution policy ${\it P}$ is a total function mapping facts (over dom) to sets of machines in ${\cal N}$

- Based on granularity of facts
- No context
- Obtainable in distributed fashion

Distribution Policies

= distribution of I based on P

Instance $I = \{R(a, b), R(b, a), S(a)\}$

Example Policy: Hypercube

[Afrati & Ullman 2010, Beame, Koutris & Suciu 2014]

$$(x, y, z) \leftarrow R(x, y), S(y, z), T(z, x)$$

Partitioning of complete valuations over machines in instance independent way through hashing of domain values

Simple Evaluation Algorithm

Parallel-Correctness

Definition

Q is *parallel-correct on I w.r.t. P*, iff [Q, P](I) = Q(I)

Definition (w.r.t. all instances)
Q is parallel-correct w.r.t. P iff
Q is parallel-correct w.r.t. P on every I

Conjunctive Queries

Conjunctive Query:

Existentially quantified conjunction of relational atoms

$$\underbrace{T(\bar{x})}_{\text{head}_{\mathcal{Q}}} \leftarrow \underbrace{R_1(\bar{y}_1), \dots, R_m(\bar{y}_m)}_{\text{body}_{\mathcal{Q}}}$$

Valuations: V = mapping from variables to domain elements

If $V(\text{body}_{\mathcal{Q}}) \subseteq I$ then output $V(\text{head}_{\mathcal{Q}})$.

CQs are monotone ($Q(I) \subseteq Q(I \cup J) \forall I, J$):

- ► CQs are parallel-sound on every *P*
- ► parallel-correct iff parallel-complete

 $[\mathcal{Q}, \boldsymbol{P}](I) = \mathcal{Q}(I), \forall I \text{ iff } \mathcal{Q}(I) \subseteq [\mathcal{Q}, \boldsymbol{P}](I), \forall I$

Parallel-Correctness Sufficient Condition

(PC0) for every valuation
$$V$$
 for \mathcal{Q} , $\bigcap_{\boldsymbol{f}\in V(\mathsf{body}_{\mathcal{Q}})} \boldsymbol{P}(\boldsymbol{f}) \neq \emptyset.$

Intuition: Facts required by a valuation meet at some machine

- Lemma

(PC0) implies Q parallel-correct w.r.t. P.

Not necessary

(PC0) not Necessary Example

Distribution policy P $all - \{R(a, b)\}$

$$all - \{R(b, a)\}$$

Query
$$\mathcal{Q}$$
: $T(x, z) \leftarrow R(x, y), R(y, z), R(x, x)$

$$V = \{x, z \to a, y \to b\}$$

Requires:

$$\begin{array}{c|c} R(a,b) & R(b,a) & R(a,a) \\ \hline \text{Derives:} & \textbf{Do not meet} \\ \hline T(a,a) \end{array}$$

$$V' = \{x, y, z \rightarrow a\}$$

Requires:

Derives:

$$=$$
 $T(a,a)$

⊋

Parallel-Correctness Characterization

- Lemma \mathcal{Q} is parallel-correct w.r.t. P iff (PC1) for every *minimal* valuation V for \mathcal{Q} , $\bigcap_{f \in V(\text{body}_{\mathcal{Q}})} P(f) \neq \emptyset.$

- Definition

V is *minimal* if no V' exists, where $V'(\text{head}_{\mathcal{Q}}) = V(\text{head}_{\mathcal{Q}}), V'(\text{body}_{\mathcal{Q}}) \subsetneq V(\text{body}_{\mathcal{Q}}).$

Parallel-Correctness Example

Notice: \mathcal{Q} is minimal CQ

CQ is minimal iff injective valuations are minimal

- Proposition

Testing whether a valuation is minimal is coNP-complete.

Parallel-Correctness Complexity

- Theorem

Deciding whether Q is parallel-correct w.r.t. P is Π_2^P -complete.

Proof:

- ▶ Lower bound: Reduction from Π_2 -QBF
- ► Upper bound: (PC1)

but, requires proper formalization of \boldsymbol{P}

Parallel-Correctness: Complexity

	CQ	 $CQ\{\neq,\cup\}$
\mathcal{P}_{fin}	Π_2^p -C	Π^p_2 -C
\mathcal{P}_{enum}	Π_2^p -C	Π^p_2 -C
\mathcal{P}^k_{nondet}	Π^p_2 -C	Π^p_2 -C

Robust under adding inequalities and union

Inequalities:

$$T(\bar{x}) \leftarrow R_1(\bar{y}_1), \dots, R_m(\bar{y}_m), x \neq y, y \neq z$$

Union:

$$\mathcal{Q} = \{\mathcal{Q}_1, \ldots, \mathcal{Q}_k\},\$$

with $head_{Q_1}, \ldots, head_{Q_k}$ over same relation.

Safe Negation

$$\underbrace{T(\bar{x})}_{\text{head}_{\mathcal{Q}}} \leftarrow \underbrace{R_1(\bar{y}_1), \dots, R_m(\bar{y}_m)}_{\text{pos}_{\mathcal{Q}}}, \underbrace{\neg S_1(\bar{z}_1), \dots, \neg S_k(\bar{z}_k)}_{\text{neg}_{\mathcal{Q}}}$$

with $vars(neg_{Q}) \subseteq vars(pos_{Q})$.

In general:

	{¬}	•••	$\{\neg,\cup,\neq\}$
\mathcal{P}_{enum}	coNEXP-c		coNEXP-c
\mathcal{P}^k_{nondet}	coNEXP-c		coNEXP-c

Surprisingly we found this via CQ[¬] containment!!

Containment

We thought Π_p^2 completeness of CQ[¬] containment was folklore

- Theorem

In general, containment for CQ[¬] is coNEXPTIME-complete

Proof:

- ► Lower bound: succinct 3-colorability
- ► Upper bound: guess instances over bounded domain

Outline

- 1. Introduction
- 2. Parallel-Correctness
- 3. Transferability
- 4. Special Cases

Computing Multiple Queries

. . .

23

Computing Multiple Queries

When can \mathcal{Q}' be evaluated on data partitioning used for \mathcal{Q} ?

. . .

24

Transferability

Definition

 $\mathcal{Q} \to_T \mathcal{Q}'$ iff \mathcal{Q}' is parallel-correct on every \boldsymbol{P} where \mathcal{Q} is parallel-correct on

Example

Transferability Characterization & Complexity

Lemma $\mathcal{Q} \to_T \mathcal{Q}'$ iff (C2) for every minimal valuation V' for \mathcal{Q}' there is a minimal valuation V for \mathcal{Q} , s.t. $V'(\text{body}_{\mathcal{Q}'}) \subseteq V(\text{body}_{\mathcal{Q}}).$

Transferability Characterization & Complexity

Lemma $\mathcal{Q} \to_T \mathcal{Q}'$ iff (C2) for every minimal valuation V' for \mathcal{Q}' there is a minimal valuation V for \mathcal{Q} , s.t. $V'(\text{body}_{\mathcal{Q}'}) \subseteq V(\text{body}_{\mathcal{Q}}).$

Theorem

Deciding $\mathcal{Q} \to_T \mathcal{Q}'$ is Π_3^P -complete.

- ▶ Lower bound: Reduction from Π_3 -QBF
- ► Upper bound: Characterization

Based on query structure alone, not on distribution policies

Outline

- 1. Introduction
- 2. Parallel-Correctness
- 3. Transferability
- 4. Special Cases

Hypercube

Algorithm:

 \blacktriangleright Reshuffling based on structure of ${\cal Q}$

 $\mathcal{H}(\mathcal{Q})$ = family of Hypercube policies for \mathcal{Q} .

- Definition

 $\mathcal{Q} \rightarrow_H \mathcal{Q}'$ iff \mathcal{Q}' is parallel-correct w.r.t. every $\boldsymbol{P} \in \mathcal{H}(\mathcal{Q})$.

Hypercube

Two properties:

- ▶ Q-generous: for every valuation facts meet on some machine (∀P ∈ H(Q))

Theorem

Deciding whether $\mathcal{Q} \rightarrow_H \mathcal{Q}'$ is NP-complete

(also when Q or Q' is acyclic)

Tractable results future work

- Queries classes
- ► Concrete families of distribution policies

(some other special cases in [AGKNS 2011])

Hybrid techinques / Tradeoffs future work

- ► Single-round Multi-join vs multi-rounds?
- ► Combining queries vs sequential distributed evaluation?

Joint work with

Tom Ameloot, Gaetano Geck, Frank Neven and Thomas Schwentick

- Parallel-Correctness and Transferability for Conjunctive Queries, PODS 2015.
- ► Technical report: http://arxiv.org/abs/1412.4030
- ► Parallel-Correctness and Containment for Conjunctive Queries with Union and Negation, ICDT 2016.
- Data partitioning for single-round multi-join evaluation in massively parallel systems, Sigmod Record 2016 (not yet published).