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Motivation

Single-round Multi-joins

» Less rounds / barriers

Formal framework for reasoning about distributed query
evaluation and optimization



Building Block

1-Round MPC model [Koutris & Suciu 2011]
Modeled by a
Query Q partitioning policy P
]

Global instance:
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Data partitioning
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Local instances:

Local outputs:
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Global output: Q(I) U Q(I2) U Q(I3)
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Main Questions: Question 1

Given target query and a distribution policy:

Does the simple algorithm work?

Parallel-Correctness

“Is query parallel-correct for current distribution policy?”

» If yes:
No data reshuffling needed!

» If no:
Choose one that works and reshuffle.

: Which one is cheapest to obtain?



Main Questions: Question 2

It may be unpractical to reason about distribution policies
- Sometimes complex to reason about
- May be hidden behind abstraction layer
- May not have been chosen yet

Given target query and previously computed query:

Do we need to reshuffle?

Parallel-Correctness | Transferability

“Given Qq, Qo: in which order to compute?”

» If transferability from Q; to Qs:
Compute Q; first, then Qs for free!
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Distribution Policies

Network N is a finite set of machines [Zinn et all. 2013]

all S-facts

all R-facts

Definition
A distribution policy P is a total function mapping facts (over
dom) to sets of machines in N/

» Based on granularity of facts
» No context
» Obtainable in distributed fashion



Distribution Policies

Network N is a finite set of machines [Zinn et all. 2013]

all R-facts all S-facts

- J -

I.Sth(l)
{R(a.b), R(b.a)} @
dI.Sth(Q)

= distribution of I based on P

Instance I = {R(a,b), R(b,a),S(a)}



Example Policy: Hypercube

[Afrati & Ullman 2010, Beame, Koutris & Suciu 2014]

(z,y,2) < R(z,y),S(y,2), T(z,2)

R(a,b)

Partitioning of complete valuations
over machines in instance indepen-
dent way through hashing of domain
values
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Global instance:

Local instances:

Local outputs:

Global output:

Notation

Simple Evaluation Algorithm

| 1 |
l Data palrtitioning l
Q
+ 4 +
Q(Il) U Q(Ig) @] Q(Ig)
[Q P U Q distp ]( ))

KEN
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Parallel-Correctness

Definition
{ Q is parallel-correct on I w.r.t. P, iff [Q, P|(I) = Q(I)

Definition (w.r.t. all instances)

Q is parallel-correct w.r.t. P iff
Q is parallel-correct w.r.t. P on every I
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Conjunctive Queries

Conjunctive Query:
Existentially quantified conjunction of relational atoms

T(z) < Ri(t1), - -, Ron(Uim)
——
headg body o

Valuations: V' = mapping from variables to domain elements
If V(bodyg) C I then output V' (headg).

CQs are monotone (Q(I) C Q(I U J)VI, J):
» CQs are parallel-sound on every P
» parallel-correct iff parallel-complete

[Q,P](I)=Q(I),VIiff Q(I) C [Q, P|(I),V]
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Parallel-Correctness
Sufficient Condition

(PCO) for every valuation V for Q,
N P #0.

feVv(body,)

Intuition: Facts required by a valuation meet at some machine

Lemma
{ (PCO) implies Q parallel-correct w.r.t. P.

Not necessary
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(PCO0) not Necessary
Example

Distribution policy P

all — {R(b,a)}
all — {R(a,b)}

Query Q: T(z,2) = R(x,y), R(y, 2), R(z, )

V=A{z,z—>a,y— b} V' ={z,y,z — a}
Requires: Requires:

R(a,b) R(b,a) R(a,a)| 2 |R(a,a)
Derives: Do not meet Derives:

T(a,a) = |T(a,a)
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Parallel-Correctness
Characterization

~ Lemma
Q is parallel-correct w.r.t. P iff

(PC1) for every minimal valuation V for Q,

P& #0.

feV(bodyg)

~ Definition
V is minimal if no V' exists, where
V'(headg) = V(headg), V'(bodyy) C V(body,).
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Parallel-Correctness
Example

Query Q: T(z,z) + R(z,y), R(y, ), R(z, )

V={z,z—>ay— b} V' ={x,y,z = a}
Requires: Requires:

|R(a,b) R(ba) R(a,a)| >
Derives: Derives:
T(a,a) = |T(a,a)

Notice: Q is minimal CQ

CQ is minimal iff injective valuations are minimal

Proposition
[ Testing whether a valuation is minimal is coNP-complete.
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Parallel-Correctness
Complexity

Theorem
Deciding whether Q is parallel-correct w.r.t. P is
1Y -complete.

Proof:
» Lower bound: Reduction from II5-QBF

» Upper bound: (PC1)
but, requires proper formalization of P
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Parallel-Correctness: Complexity

] \CQ \ \CQ{#,U}\
me Hg-C HS'C
Penum Hg-c Hg'c
73rfondet Hg-C Hg'c

Inequalities:

T(z) < Bi(91),-- s Bn(Um), & # y,y # 2

Union:

Q={9,...,Q},

with headg,, ..., headg, over same relation.
19



Safe Negation

T(z) < Ri(11),- -, B (Ym), 2S1(21), - - -, ~Sk(Zr)
——
headg pPOsg nego

with vars(negg) C vars(posg).

In general:
| | {3 [ [ {UA
Penum | CONEXP-c coNEXP-c
PE get | CONEXP-C coNEXP-c

Surprisingly we found this via CQ™ containment!!
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Containment

We thought Hf, completeness of CQ™ containment was folklore

Theorem
{ In general, containment for CQ™ is coNEXPTIME-complete

Proof:
» Lower bound: succinct 3-colorability
» Upper bound: guess instances over bounded domain
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Computing Multiple Queries

| ! |

Redistribution
Q— |

Q(I) +

Q'(I) +

23



Computing Multiple Queries

| ! |

Redistribution
Q— |

Q(I) +

When can Q’ be evaluated on data partitioning used for 9?

9 — No reshuffling
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Transferability

Definition
Q —r Q' iff @ is parallel-correct on every P where Q is parallel-
correct on

Example
Q:T() < R(z,y), R(y, 2), R(z,w)

@ Q @ Q Q' : N() « R(x,y), R(y,x)
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Transferability
Characterization & Complexity

~ Lemma
Q —T Ql iff
(C2) for every minimal valuation V' for @' there is a minimal

valuation V for Q, s.t.
V'(bodygo/) € V(bodyy).

26



Transferability
Characterization & Complexity

~ Lemma
Q —T Ql iff
(C2) for every minimal valuation V' for @' there is a minimal

valuation V for Q, s.t.
V'(bodygo/) € V(bodyy).

~ Theorem
Deciding Q —¢ Q' is IT’-complete.

» Lower bound: Reduction from II3-QBF
» Upper bound: Characterization
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Hypercube

Algorithm:
» Reshuffling based on structure of Q

H(Q) = family of Hypercube policies for Q.

Definition
Q —py Qiff
Q' is parallel-correct w.r.t. every P € H(Q).
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Hypercube

Two properties:

» Q-generous: for every valuation facts meet on some
machine (VP € H(Q))

» Q-scattered: there is a policy scattering facts in such a
way that no facts meet by coincidence (V1)

Theorem
{ Deciding whether @ —y Q' is NP-complete

(also when Q or Q' is acyclic)
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Tractable results

» Queries classes
» Concrete families of distribution policies
(some other special cases in [AGKNS 2011])

Hybrid techinques / Tradeoffs
» Single-round Multi-join vs multi-rounds?
» Combining queries vs sequential distributed evaluation?
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Joint work with

Tom Ameloot, Gaetano Geck, Frank Neven and Thomas Schwentick

Parallel-Correctness and Transferability for Conjunctive Queries, PODS
2015.

Technical report: http://arxiv.org/abs/1412.4030

Parallel-Correctness and Containment for Conjunctive Queries with
Union and Negation, ICDT 2016.

Data partitioning for single-round multi-join evaluation in massively
parallel systems, Sigmod Record 2016 (not yet published).
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