Weaker Forms of Monotonicity for Declarative Networking: a more fine-grained answer to the CALM-conjecture.

> Tom J Ameloot¹, Bas Ketsman¹, Frank Neven¹ and Daniel Zinn²

> > ¹ Hasselt University ² LogicBlox, Inc

Overview

1. Introduction

- 2. CALM
- 3. CALM Revision 1
- 4. CALM Revision 2
- 5. Datalog
- 6. Conclusion

Introduction

- Declarative Networking: Datalog based languages for parallel and distributed computing
- Cloud-computing: Setting with asynchronous communication via messages which can be arbitrarily delayed but not lost
- ► CALM-conjecture: No coordination = Monotonicity

```
[Hellerstein, 2010]
```

(CALM = Consistency And Logical Monotonicity)

Monotonicity

Definition

A query Q is monotone if $Q(\mathbf{I})\subseteq Q(\mathbf{I}\cup\mathbf{J})$ for all database instances \mathbf{I} and $\mathbf{J}.$

Notation

 \mathcal{M} : class of monotone queries

Example

CALM by Example

- broadcast all data
- periodically output local triangles

No coordination + Eventually consistent

CALM by Example

CALM-conjecture

CALM-conjecture

No-coordination = *Monotonicity*

[Hellerstein, 2010]

► [Ameloot, Neven, Van den Bussche, 2011]: TRUE

- ▶ for a setting where nodes have no information about the distribution of facts
- ► [Zinn, Green, Ludäscher, 2012]: FALSE
 - ▶ for settings where nodes have information about the distribution of facts
- ► TRUE when also refining montonicity

Overview

- 1. Introduction
- 2. CALM
- 3. CALM Revision 1
- 4. CALM Revision 2
- 5. Datalog
- 6. Conclusion

Relational Transducer Networks

[Ameloot, Neven, Van den Bussche, 2011]

- Network $\mathcal{N} = \{x, y, u, z\}$
- ► Transducer Π
- messages can be arbitrarily delayed but never get lost

Semantics defined in terms of runs over a transition system

Relational Transducer Networks

[Ameloot, Neven, Van den Bussche, 2011]

Definition

- A transducer Π computes a query Q if
- ► for all networks \mathcal{N} , \leftarrow Network independent
- ► for all databases I, Cata distribution independent
- ▶ for all horizontal distributions H, and
- for every run of Π ,

 $out(\Pi) = Q(\mathbf{I}).$

Consistency requirement

Coordination-free Algorithms

Q_Δ : select all triangles

- broadcast all data
- output triangles whenever new data arrives

Coordination-free Algorithms

[Ameloot, Neven, Van den Bussche, 2011]

Definition

 Π is coordination-free if for all inputs ${\bf I}$ there is a distribution on which Π computes $Q({\bf I})$ without having to do communication.

Goal: separate data-communication from coordination-communication

Example: Ideal Distribution

Q_Δ : select all triangles

periodically output local triangles

CALM-conjecture

[Ameloot, Neven, Van den Bussche, 2011]

A query has a coordination-free and eventually consistent execution strategy iff the query is monotone

 $\begin{array}{l} \text{Theorem} \\ \mathcal{F}_0 = \mathcal{M} \end{array}$

Definition

 $\mathcal{F}_0 = \mathsf{set}$ of queries which are distributedly computed by coordination-free transducers

Overview

- 1. Introduction
- 2. CALM
- 3. CALM Revision 1
- 4. CALM Revision 2
- 5. Datalog
- 6. Conclusion

Policy-aware Transducers

[Zinn, Green, Ludäscher, 2012]

Definition

A distribution policy **P** for σ and \mathcal{N} is a total function from $facts(\sigma)$ to the power set of \mathcal{N} .

Definition

A policy-aware transducer is a transducer with access to ${\bf P}$ restricted to its active domain

Definition

 $\mathcal{F}_1 = \mathsf{set}$ of queries which are distributedly computed by policy-aware coordination-free transducers

Definition

A fact **f** is domain distinct from instance **I** when $adom(\mathbf{f}) \not\subseteq adom(\mathbf{I})$.

Example

Definition

An instance J is domain distinct from instance I when every fact $f\in J$ is domain distinct from I.

Example

Definition

A query Q is domain-distinct-monotone if $Q(\mathbf{I}) \subseteq Q(\mathbf{I} \cup \mathbf{J})$ for all \mathbf{I} and \mathbf{J} for which \mathbf{J} is domain distinct from \mathbf{I} .

Notation

 $\mathcal{M}_{distinct}$: class of domain-distinct-monotone queries

Remark

 $\mathcal{M}_{\textit{distinct}}$: class of queries preserved under extensions

Example

Select open triangles in graph $\in \mathcal{M}_{distinct}$.

Not domain-distinct from ${\bf I}$

Revised CALM-conjecture

A query has a coordination-free and eventually consistent execution strategy under distribution policies iff the query is domain-distinct-monotone

Theorem $\mathcal{F}_1 = \mathcal{M}_{distinct}$

Definition

 $\mathcal{F}_1 = \mathsf{set}$ of queries which are distributedly computed by $\mathsf{policy}\text{-}\mathsf{aware}$ coordination-free transducers

Proof of $\mathcal{M}_{distinct} \subseteq \mathcal{F}_1$

- ▶ Monotonicity: $Q(\mathbf{J}) \subseteq Q(\mathbf{I})$ for every $\mathbf{J} \subseteq \mathbf{I}$
- Domain-distinct-monotonicity:

Let I be an instance, $C \subseteq adom(\mathbf{I})$.

Induced instance: $\mathbf{I}_{|C} = \{\mathbf{f} \in \mathbf{I} \mid adom(\mathbf{f}) \subseteq C\}$

By domain-distinct-monotonicity: $Q(\mathbf{I}_{|C}) \subseteq Q(\mathbf{I})$

Proof of $\mathcal{M}_{distinct} \subseteq \mathcal{F}_1$

• \mathcal{F}_1 setting:

Let I be an instance, $C \subseteq adom(\mathbf{I})$.

C is complete at node *x* when *x* knows for every fact **f** with $adom(\mathbf{f}) \subseteq C$ whether $\mathbf{f} \in \mathbf{I}$ or $\mathbf{f} \notin \mathbf{I}$.

Algorithm

- broadcast all present and deduced absent facts
- Evaluate query on complete sets

Overview

- 1. Introduction
- 2. CALM 3. CALM Revision 1 4. CALM Revision 2 $\mathcal{F}_{0} = \mathcal{M}$ $\mathcal{H}_{0} \qquad \mathcal{H}_{0}$ $\mathcal{F}_{1} = \mathcal{M}_{distinct}$ $\mathcal{H}_{0} \qquad \mathcal{H}_{0}$ $\mathcal{F}_{2} = \mathcal{M}_{disjoint}$
- 5. Datalog
- 6. Conclusion

Domain-guided Policies Input instance

"Distribution Policy"

Domain-guided Policies

[Zinn, Green, Ludäscher, 2012]

Definition

 \mathcal{F}_2 = queries which are distributedly computed under domain-guided distribution policies by policy-aware coordination-free transducers.

Definition

An instance **J** is domain disjoint from instance **I** when $adom(\mathbf{I}) \cap adom(\mathbf{J}) = \emptyset$.

Example

Definition

A query Q is domain-disjoint-monotone if $Q(\mathbf{I}) \subseteq Q(\mathbf{I} \cup \mathbf{J})$ for all \mathbf{I} and \mathbf{J} for which \mathbf{J} is domain disjoint from \mathbf{I} .

Notation

 $\mathcal{M}_{disjoint}$: class of domain-disjoint-monotone queries

Revised CALM-conjecture

A query has a coordination-free and eventually consistent execution strategy under domain-guided distribution policies iff the query is domain-disjoint-monotone

 $\begin{array}{l} \text{Theorem} \\ \mathcal{F}_2 = \mathcal{M}_{\textit{disjoint}} \end{array}$

Definition

 $\mathcal{F}_2 =$ queries which are distributedly computed under domain-guided distribution policies by policy-aware coordination-free transducers.

Intermediate Summary

Datalog Variants

$$\mathsf{Datalog}(\neq) \subsetneq \mathsf{wILOG}(\neq) = \mathcal{M}$$

• $\mathsf{Datalog}(\neq) \subsetneq \mathcal{M} \cap \mathsf{PTIME}$

[Afrati, Cosmadakis, Yannakakis, 1994]

▶ wILOG(\neq) = M

[Cabibbo,1998]

 $\mathsf{SP}\text{-}\mathsf{Datalog} \subsetneq \mathsf{SP}\text{-}\mathsf{w}\mathsf{ILOG} = \mathcal{M}_{\mathit{distinct}}$

• SP-Datalog $\subsetneq \mathcal{M}_{distinct} \cap \text{PTIME}$

[Afrati, Cosmadakis, Yannakakis, 1994]

• SP-wILOG =
$$\mathcal{M}_{distinct}$$

[Cabibbo,1998]

Datalog variant of $\mathcal{M}_{disjoint}$?

semicon-Datalog

 $\mathsf{semicon-Datalog} \subseteq \mathsf{semicon-wILOG} = \mathcal{M}_{disjoint}$

Connected Rules

 $\begin{array}{l} O(x,y,z) \leftarrow E(x,y), E(y,z), E(z,x) \text{ is connected} \\ O(x,y,z) \leftarrow E(x,y), E(z,z) \text{ is not connected} \end{array}$

Definition

A stratified-Datalog program is semi-connected if all rules are connected except (possibly) those of the last stratum.

Example

Complement of transitive closure:

$$TC(x, y) \leftarrow E(x, y)$$
$$TC(x, y) \leftarrow E(x, z), TC(z, y)$$
$$O(x, y) \leftarrow \neg TC(x, y), x \neq y$$

Conclusion and Future Work

Conclusion

- ► Coordination-free evaluation = (refined) monotonicity
- ► (semi-)connected Datalog

Can we put the CALM-conjecture to rest?

Future Work

- Other settings / other distribution policies?
- Coordination-free + efficient evaluation?