
Parallel-Correctness and Transferability

for Conjunctive Queries

Tom J. Ameloot1 Gaetano Geck2 Bas Ketsman1

Frank Neven1 Thomas Schwentick2

1 Hasselt University 2 Dortmund University

Big Data

“Too large for one server”

Several systems: Hadoop, Spark, . . . many others

Common Strategy

I Data is distributed

I Query evaluation:
Multiple rounds with reshuffling

2

Simple Evaluation Algorithm

1-Round MPC model [Koutris & Suciu 2011]

Modeled by a
distribution policy P

Q Q Q

RedistributionStep 1:

Step 2:

Input = query Q

Output = union of output at each server

3

Main Problems
Semantical correctness:

When is the simple algorithm correct on a
distribution policy?

Parallel-Correctness

Multiple-query optimization:

Which queries allow to reuse the distribution
obtained for another query?

Transferability

Formal framework for reasoning about correctness
of query evaluation and optimization in a
distributed setting

4

Outline

1. Definitions

2. Parallel-Correctness

3. Transferability

4. Lowering the Complexity

5. Conclusion & Future Work

5

Definitions

Database schema

Infinite set of data values

Instance I is a finite set of facts R(d1, . . . , dn)

Conjunctive Query: T (x̄)← R1(ȳ1), . . . , Rm(ȳm)

6

Distribution Policies

Network N is a finite set of nodes

all R-facts all S-facts

P

Definition
A distribution policy P is a total function mapping
facts (over dom) to sets of nodes in N

7

Distribution Policies

Network N is a finite set of nodes

all R-facts all S-facts

P

{R(a, b), R(b, a)} {S(a)}
distP ,I(1)

distP ,I(2)

= distribution of I based on P

Instance I = {R(a, b), R(b, a), S(a)}

8

Hypercube

I Invented in the context of Datalog evaluation
[Ganguli, Silberschatz & Tsur 1990]

I Described in Map-Reduce context
[Afrati & Ullman 2010]

I Intensively studied
[Beame, Koutris & Suciu 2014]

Algorithm:
I Reshuffling based on structure of Q

Partitioning of complete valuations
over servers in instance independent
way through hashing of domain
values

9

Simple Evaluation Algorithm

Input = query Q

Step 1: distribute data over servers w.r.t. P

Step 2: evaluate Q at each server

10

Parallel-Correctness

Definition
Q is parallel-correct on I w.r.t. P , iff

Q(I) =
⋃
κ∈N

Q(distP ,I(κ))

⊇ by monotonicity

Definition (w.r.t. all instances)
Q is parallel-correct w.r.t. P iff
Q is parallel-correct w.r.t. P on every I

11

Parallel-Correctness
Sufficient Condition

(C0) for every valuation V for Q,⋂
f∈V (bodyQ)

P (f) 6= ∅.

Intuition: Facts required by a valuation meet at
some node

Lemma
(C0) implies Q parallel-correct w.r.t. P .

Not necessary
12

(C0) not Necessary
Example

Distribution policy P

all − {R(a, b)}
all − {R(b, a)}

Query Q: T (x, z)← R(x, y), R(y, z), R(x, x)

V = {x, z → a, y → b}
Requires:

R(a, b) R(b, a) R(a, a)

Derives:

T (a, a)

R(a, b) R(b, a) R(a, a)

Do not meet

V ′ = {x, y, z → a}
Requires:

R(a, a)

Derives:

T (a, a)

)

=

13

Parallel-Correctness
Characterization

Lemma
Q is parallel-correct w.r.t. P iff

(C1) for every minimal valuation V for Q,⋂
f∈V (bodyQ)

P (f) 6= ∅.

Definition
V is minimal if no V ′ exists, where
V ′(headQ) = V (headQ), V ′(bodyQ) (V (bodyQ).

14

Parallel-Correctness
Example

Query Q: T (x, z)← R(x, y), R(y, z), R(x, x)

V = {x, z → a, y → b}
Requires:

R(a, b) R(b, a) R(a, a)

Derives:

T (a, a)

V ′ = {x, y, z → a}
Requires:

R(a, a)

Derives:

T (a, a)

)

=

Notice: Q is minimal CQ

CQ is minimal iff injective valuations are minimal

Proposition

Testing whether a valuation is minimal is coNP-complete.

15

Parallel-Correctness
Complexity

Theorem
Deciding whether Q is parallel-correct w.r.t. P is
ΠP

2 -complete.

Proof:

I Lower bound: Reduction from Π2-QBF

I Upper bound: Characterization
but, requires proper formalization of P

16

Outline

1. Definitions

2. Parallel-Correctness

3. Transferability

4. Lowering the Complexity

5. Conclusion & Future Work

17

Computing Multiple Queries

Q Q Q

RedistributionQ →

Q(I)←

Q′ Q′ Q′

RedistributionQ′ →

Q′(I)←

. . .
18

Computing Multiple Queries

Q Q Q

RedistributionQ →

Q(I)←

Q′ Q′ Q′

Q′ →

Q′(I)←

When can Q′ be evaluated on distribution used for Q?
No reshuffling

. . .

19

Transferability
Definition
Q →T Q′ iff Q′ is parallel-correct on every P where
Q is parallel-correct on

Example

Q : T ()← R(x, y), R(y, z), R(z, w)

Q′ : N()← R(x, y), R(y, x)a b c d

a b c

a b a

a b a

Q →T Q′

20

Transferability
Characterization & Complexity

Lemma
Q →T Q′ iff

(C2) for every minimal valuation V ′ for Q′ there is
a minimal valuation V for Q, s.t.

V ′(bodyQ) ⊆ V (bodyQ).

Based on query structure alone, not on distribution
policies

21

Transferability
Characterization & Complexity

Lemma
Q →T Q′ iff

(C2) for every minimal valuation V ′ for Q′ there is
a minimal valuation V for Q, s.t.

V ′(bodyQ) ⊆ V (bodyQ).

Theorem

Deciding Q →T Q′ is ΠP
3 -complete.

I Lower bound: Reduction from Π3-QBF

I Upper bound: Characterization

22

Outline

1. Definitions

2. Parallel-Correctness

3. Transferability

4. Lowering the Complexity

5. Conclusion & Future Work

23

Strongly Minimal CQs

Definition
A CQ is strongly minimal if all its valuations are min-
imal

I Full-CQs
T (x, y)← R(x, y), R(x, x)

I CQs without self-joins
T ()← R(x, y), S(x, x)

I Hybrids
T (y)← R(x, y), R(x, x), R(z, x), S(z)

A minimal CQ is not always strongly minimal

24

Strongly Minimal CQs

Lemma
Deciding whether Q is strongly minimal is coNP-
complete

Theorem
Deciding Q →T Q′ is NP-complete for strongly min-
imal Q

25

Hypercube

Algorithm:

I Reshuffling based on structure of Q

Partitioning of complete valuations
over servers in instance independent
way through hashing of domain
values

H(Q) = family of Hypercube policies for Q.

Definition
Q →H Q’ iff
Q′ is parallel-correct w.r.t. every P ∈ H(Q).

26

Hypercube

Two properties:

I Q-generous: for every valuation facts meet
on some node (∀P ∈ H(Q))

I Q-scattered: there is a policy scattering facts
in such a way that no facts meet by
coincidence (∀I)

Theorem
Deciding whether Q →H Q′ is NP-complete

(also when Q or Q′ is acyclic)

27

Related Concepts

Containment

Q ⊆ Q′

Lemma
Containment and transferability are incomparable

Determinacy (Data-Integration)

Q′(I) = Q′(J) implies Q(I) = Q(J), for every I, J

Lemma
Determinacy and transferability are incomparable

28

Summary

Formal framework for reasoning about correctness
of query evaluation and optimization in a distributed
setting

Main concepts:

I Parallel-correctness

I Transferability

Independent of expression mechanism

29

Future Work

Expression Formalism for distribution policies

I Other than Hypercube?

Distribution policy for set of queries

I Given CQ: which distribution policy?

Hypercube

I Given set of CQs: which distribution policy?

Open question

30

Future Work

Tractable Results

I Other classes of queries?

I Other families of distribution policies?

More expressive classes of queries

I This work: CQs

I FO: undecidable

I initial results: UCQs, CQs with negation

31

	Definitions
	Parallel-Correctness
	Transferability
	Lowering the Complexity
	Conclusion & Future Work

