
Parallel-Correctness and Transferability for
Conjunctive Queries

Tom J Ameloot1, Gaetano Geck2, Bas Ketsman1, Frank Neven1, Thomas Schwentick2

1 Hasselt University & transnational University of Limburg 2 TU Dortmund University

Introduction

Big Data: Data too large to be processed on one server

Today systems: Hadoop, Spark, . . . , and many others

Common Strategy:
I Data is stored in a distributed way
I Query evaluation:

Multiple rounds with reshuffling

Distribution Policies

Network N is a finite set of nodes
Instance I = {R(a, b),R(b, a), S(a)}

all R-facts all S -facts

1 2

P

{R(a, b),R(b, a)} {S(a)}
distP,I (1)

distP,I (2)

= distribution of I based on P
Definition
A distribution policy P is a total function mapping facts (over dom) to
sets of nodes in N

Simple Evaluation Algorithm

1-Round MPC model [Koutris & Suciu 2011]
Modeled by a
distribution policy P

Q Q Q

RedistributionStep 1:

Step 2:

Input = query Q

Output = union of output at each server

When is the simple algorithm
correct on a distribution policy?
Parallel-Correctness

Definition
Q is parallel-correct on I w.r.t. P, iff

Q(I) =
⋃
κ∈N
Q(distP,I (κ))

⊇ by monotonicity
Definition (w.r.t. all instances)
Q is parallel-correct w.r.t. P iff
Q is parallel-correct w.r.t. P on every I

Sufficient Condition

(C0) for every valuation V for Q,⋂
f∈V (bodyQ)

P(f) 6= ∅.

Intuition: Facts required by a valuation meet at some node
Lemma
(C0) implies Q parallel-correct w.r.t. P.

Not necessary
Distribution policy P

all − {R(a, b)}
all − {R(b, a)}

Query Q: T (x , z)← R(x , y),R(y, z),R(x , x)

V = {x , z → a, y → b}
Requires:

Derives:

T (a, a)

R(a, b) R(b, a) R(a, a)

Do not meet

V ′ = {x , y, z → a}
Requires:

R(a, a)
Derives:

T (a, a)

)

=

Notice: Q is minimal CQ

I CQ is minimal iff injective valuations are minimal
Proposition
Testing whether a valuation is minimal is coNP-complete.

Characterization

Lemma
Q is parallel-correct w.r.t. P iff
(C1) for every minimal valuation V for Q,⋂

f∈V (bodyQ)
P(f) 6= ∅.

Definition
V is minimal if no V ′ exists, where
V ′(headQ) = V (headQ), V ′(bodyQ) (V (bodyQ).

Complexity

Theorem
Deciding whether Q is parallel-correct w.r.t. P is ΠP

2 -complete.

Proof:
I Lower bound: Reduction from Π2-QBF
I Upper bound: Characterization

but, requires proper formalization of P

Multi-Query Optimization

Computing a set of queries: {Q,Q′, . . .}

server 1 server 2 server 3

Q Q Q

RedistributionQ
Input

Q(I)
Output

Q′ Q′ Q′

RedistributionQ′
Input

Q′(I)
Output

. . .

Redistribution is not always necessary

Which queries allow to reuse the
distribution obtained for another
query?
Transferability

Definition
Q →T Q′ iff Q′ is parallel-correct on every P
where Q is parallel-correct on

Example
Q : T ()← R(x , y),R(y, z),R(z ,w) Q′ : N ()← R(x , y),R(y, x)
Minimal valuations for Q: Minimal valuations for Q′:

a b c d

a b c

a b a
a b a

Facts required by minimal valuations for Q′ are also required
by minimal valuations for Q

Q →T Q′

Characterization

Lemma
Q →T Q′ iff
(C2) for every minimal valuation V ′ for Q′ there is a minimal valuation
V for Q, s.t. V ′(bodyQ) ⊆ V (bodyQ).

Based on query structure alone, not on distribution policies

Complexity

Theorem
Deciding Q →T Q′ is ΠP

3 -complete.

Proof:
I Lower bound: Reduction from Π3-QBF
I Upper bound: Characterization

Strongly Minimal CQs

Definition
A CQ is strongly minimal if all its valuations are minimal

I Full-CQs
T (x , y)← R(x , y),R(x , x)

I CQs without self-joins
T ()← R(x , y), S(x , x)

I Hybrids
T (y)← R(x , y),R(x , x),R(z , x), S(z)

A minimal CQ is not always strongly minimal
Lemma
Deciding whether Q is strongly minimal is coNP-complete
Theorem
Deciding Q →T Q′ is NP-complete for strongly minimal Q

Hypercube

I Invented in the context of Datalog evaluation
[Ganguli, Silberschatz & Tsur 1990]

I Described in Map-Reduce context
[Afrati & Ullman 2010]

I Intensively studied by many people
[Beame, Koutris & Suciu 2014]

Algorithm sketch:
I Reshuffling based on structure of Q

Partitioning of complete valuations over
servers in instance independent way through
hashing of domain values

Let H(Q) be the family of Hypercube distributions for Q.

Definition
Q →H Q’ iff
Q′ is parallel-correct w.r.t. every P ∈ H(Q).
Two properties:
I Q-generous: for every valuation facts meet on some node

(∀P ∈ H(Q))
I Q-scattered: there is a policy scattering facts in such a way

that no facts meet by coincidence (∀I)

Theorem
Deciding whether Q →H Q′ is NP-complete
(also when Q or Q′ is acyclic)

Conclusion & Future Work

Summary:
Formal framework for reasoning about correctness of query evaluation and
optimization in a distributed setting

Based on two concepts:
I Parallel-correctness
I Transferability

Independent of expression mechanism

Related Concepts

Containment
Q ⊆ Q′

Lemma
Containment and transferability are incomparable

Determinacy (Data-Integration)
Q′(I) = Q′(J) implies Q(I) = Q(J), for every I , J

Lemma
Determinacy and transferability are incomparable

Transferability (Distributed)
Q →T Q′

Future Work

Expression Formalism for distribution policies
I Other than Hypercube?
Distribution policy for set of queries
I Given CQ: which distribution policy? Hypercube
I Given set of CQs: which distribution policy? Open question

Tractable Results
I Other classes of queries?
I Other families of distribution policies?
More expressive classes of queries
I This work: CQs
I FO: undecidable
I initial results: UCQs, CQs with negation

1 <firstname>.<lastname>@uhasselt.be – Hasselt University, Martelarenlaan 42, 3590 Hasselt (Belgium) 2 <firstname>.<lastname>@udo.edu – TU Dortmund, Fakultät für Informatik, Otto-Hahn-Str. 12, 44227 Dortmund (Germany)

