Formal approaches to:

# Coordination-free query evaluation and multi-query optimization in parallel and distributed systems

Bas Ketsman





## Outline

#### CALM Formalization

CALM Revision 1

Conclusion

Parallel-Correctness

Transferability

Conclusion

Coordination-free evaluation

Multi-Query optimization

**Context:** Declarative Networking, where Datalog based languages are used for parallel and distributed computing in clusters with disordered communication.

CALM-conjecture: No-coordination  $\stackrel{?}{=}$  Monotonicity

[Hellerstein, 2010]

**Context:** Declarative Networking, where Datalog based languages are used for parallel and distributed computing in clusters with disordered communication.

CALM-conjecture: No-coordination  $\stackrel{?}{=}$  Monotonicity

[Hellerstein, 2010]

[Ameloot, Neven, Van den Bussche, 2011]: TRUE

**Context:** Declarative Networking, where Datalog based languages are used for parallel and distributed computing in clusters with disordered communication.

CALM-conjecture: No-coordination  $\stackrel{?}{=}$  Monotonicity

[Hellerstein, 2010]

[Ameloot, Neven, Van den Bussche, 2011]: TRUE

[Zinn, Green, Ludäscher, 2012]: FALSE

**Context:** Declarative Networking, where Datalog based languages are used for parallel and distributed computing in clusters with disordered communication.

CALM-conjecture: No-coordination  $\stackrel{?}{=}$  Monotonicity

[Hellerstein, 2010]

#### [Ameloot, Neven, Van den Bussche, 2011]: TRUE

▶ for a setting where nodes have **no** information about the horizontal-distribution of records

[Zinn, Green, Ludäscher, 2012]: FALSE

**Context:** Declarative Networking, where Datalog based languages are used for parallel and distributed computing in clusters with disordered communication.

CALM-conjecture: No-coordination  $\stackrel{?}{=}$  Monotonicity

[Hellerstein, 2010]

#### [Ameloot, Neven, Van den Bussche, 2011]: TRUE

▶ for a setting where nodes have **no** information about the horizontal-distribution of records

#### [Zinn, Green, Ludäscher, 2012]: FALSE

 for settings where nodes have information about the horizontal-distribution of record **Goal:** To clarify the relation between **monotonicity** and **coordination** in asynchronous systems and to reveal the more complete picture

## Outline

#### CALM Formalization

CALM Revision 1

Conclusion

Parallel-Correctness

Transferability

Conclusion

Coordination-free evaluation

Multi-Query optimization

## Definition

A query Q is monotone if  $Q(\mathbf{I}) \subseteq Q(\mathbf{I} \cup \mathbf{J})$  for all database instances  $\mathbf{I}$  and  $\mathbf{J}$ .

**Notation:** M = class of monotone queries

## Definition

A query Q is monotone if  $Q(\mathbf{I}) \subseteq Q(\mathbf{I} \cup \mathbf{J})$  for all database instances  $\mathbf{I}$  and  $\mathbf{J}$ .

**Notation:** M = class of monotone queries

#### Example

- ▶  $Q_\Delta$ : Select triangles in a graph  $\in \mathcal{M}$
- ▶  $Q_{<}$ : Select open triangles in a graph  $\notin M$

## Definition

A query Q is monotone if  $Q(\mathbf{I}) \subseteq Q(\mathbf{I} \cup \mathbf{J})$  for all database instances  $\mathbf{I}$  and  $\mathbf{J}$ .

**Notation:** M = class of monotone queries

#### Example



## Definition

A query Q is monotone if  $Q(\mathbf{I}) \subseteq Q(\mathbf{I} \cup \mathbf{J})$  for all database instances  $\mathbf{I}$  and  $\mathbf{J}$ .

**Notation:**  $\mathcal{M}$  = class of monotone queries

#### Example

▶  $Q_\Delta$ : Select triangles in a graph  $\in \mathcal{M}$ 



#### **Relational Transducer Networks**

[Ameloot, Neven, Van den Bussche, 2011]

- Network  $\mathcal{N} = \{x, y, u, z\}$
- ► Transducer Π
- messages can be arbitrarily delayed but never get lost



#### **Relational Transducer Networks**

[Ameloot, Neven, Van den Bussche, 2011]

- Network  $\mathcal{N} = \{x, y, u, z\}$
- ► Transducer Π
- messages can be arbitrarily delayed but never get lost



Semantics defined in terms of runs over a transition system

#### **Eventual Consistent Query Evaluation**

## Definition

A transducer  $\Pi$  computes a query Q if

- ▶ for all networks  $\mathcal{N}$ , ← Network independent
- ► for all databases I, \_\_\_\_ Distribution independent
- for all horizontal distributions H, and
- for every run of  $\Pi$ ,

 $out(\Pi) = Q(\mathbf{I}).$ 

Consistency requirement

#### **Example:** $\mathcal{Q}_{\Delta}$ : select all triangles







## **Example:** $Q_{\Delta}$ : select all triangles



#### **Example:** $\mathcal{Q}_{\Delta}$ : select all triangles







#### **Example:** $Q_{\Delta}$ : select all triangles



#### **Example:** $Q_{\Delta}$ : select all triangles



Extremely naive, but works .. and is coordination-free!

















Coordination is needed to reason about the absence of records.

#### **Coordination-freeness**

**Goal:** separate data-communication from coordination-communication

#### **Coordination-freeness**

**Goal:** separate data-communication from coordination-communication

#### Definition

IT is coordination-free if for all inputs I there is a distribution on which IT computes Q(I) without having to do communication.

[Ameloot, Neven, Van den Bussche, 2011]

#### **Example: Ideal Distribution**

 $Q_{\Delta}$ : select all triangles







#### **Example: Ideal Distribution**

 $Q_\Delta$ : select all triangles





#### Algorithm:

- Broadcast all data
- Output triangles whenever new data arrives



#### **Example: Ideal Distribution**

 $Q_\Delta$ : select all triangles





### Algorithm:

- ▶ (Broadcast all data)
- Output triangles whenever new data arrives



#### **CALM-conjecture**

[Ameloot, Neven, Van den Bussche, 2011]

## A query has a coordination-free and eventually consistent execution strategy iff the query is monotone Theorem $\mathcal{F}_0 = \mathcal{M}$

## Definition

 $\mathcal{F}_0 = \text{set of queries which are distributedly computed by coordination-free transducers}$ 

## Outline

#### CALM Formalization

## CALM Revision 1

Conclusion

Parallel-Correctness

Transferability

Conclusion

Coordination-free evaluation

Multi-Query optimization









#### **Deduction rules**

- in local database  $\Rightarrow$  in global database
- not in local database + in scope  $\Rightarrow$  not in global database
- ▶ not in local database + not in scope  $\Rightarrow$  unknown


## **Policy-aware Transducers**



## **Policy-aware Transducers**

[Zinn, Green, Ludäscher, 2012]

# Definition

A distribution policy **P** for  $\sigma$  and  $\mathcal{N}$  is a total function from  $facts(\sigma)$  to the power set of  $\mathcal{N}$ .

# Definition

A policy-aware transducer is a transducer with access to  ${\bf P}$  restricted to its active domain

# Definition

 $\mathcal{F}_1$  = set of queries which are distributedly computed by policy-aware coordination-free transducers

# Definition

A fact **f** is domain distinct from instance **I** when  $adom(\mathbf{f}) \not\subseteq adom(\mathbf{I})$ .



# Definition

A query  $\mathcal{Q}$  is domain-distinct-monotone if  $\mathcal{Q}(\mathbf{I}) \subseteq \mathcal{Q}(\mathbf{I} \cup \mathbf{J})$  for all  $\mathbf{I}$  and  $\mathbf{J}$ , with  $\mathbf{J}$  having only domain-distinct facts

**Notation:**  $M_{distinct}$  = domain-distinct-monotone queries



### Remark

 $\mathcal{M}_{distinct}$ : class of queries preserved under extensions



Select open triangles in graph  $\in \mathcal{M}_{distinct}$ .



Ι





Select open triangles in graph  $\in \mathcal{M}_{distinct}$ .





Not domain-distinct from  ${\bf I}$ 

## **Revised CALM-conjecture**



# Definition

 $\mathcal{F}_1$  = set of queries which are distributedly computed by policy-aware coordination-free transducers

#### For domain-distinct-monotone queries:

- ► broadcast all present and deduced absent facts
- ► Evaluate query on complete sets

#### For domain-distinct-monotone queries:

- ► broadcast all present and deduced absent facts
- ► Evaluate query on complete sets

**Example:**  $Q_{<}$ : Select open triangles in a graph



#### For domain-distinct-monotone queries:

- ► broadcast all present and deduced absent facts
- ► Evaluate query on complete sets

**Example:**  $Q_{<}$ : Select open triangles in a graph



#### For domain-distinct-monotone queries:

- ► broadcast all present and deduced absent facts
- ► Evaluate query on complete sets

**Example:**  $Q_{<}$ : Select open triangles in a graph



#### For domain-distinct-monotone queries:

- ► broadcast all present and deduced absent facts
- ► Evaluate query on complete sets

**Example:**  $Q_{<}$ : Select open triangles in a graph



#### For domain-distinct-monotone queries:

- ► broadcast all present and deduced absent facts
- ► Evaluate query on complete sets

**Example:**  $Q_{<}$ : Select open triangles in a graph



### **Complete Picture**



[Ameloot, Ketsman, Neven, Zinn PODS 2014 best paper; TODS 2016]

# Outline

## CALM Formalization

CALM Revision 1

Conclusion

Parallel-Correctness

Transferability

Conclusion

Coordination-free evaluation

Multi-Query optimization

**Goal:** To clarify the relation between **monotonicity** and **coordination** in asynchronous systems and to reveal the more complete picture

- A four-level quantification of coordination exists in terms of the amount of information needed for the query to become coordination-free
- The CALM conjecture reveals a very robust relation between coordination and non-monotonic behaviour of queries

### **Open Questions & Future Work**

- ► How to compute queries without coordination and with less communication?
- ► How to compute queries with "some" coordination?

### **Open Questions & Future Work**

- ► How to compute queries without coordination and with less communication?
- ► How to compute queries with "some" coordination?

## **Related Work**

- Oblivious broadcasting algorithms = broadcast fragment of local database [Ketsman, Neven ICDT 2015; ToCS 2016]
- A worst-case optimal load algorithm for join evaluation [Ketsman, Suciu, PODS 2017]

# Outline

## CALM Formalization

CALM Revision 1

Conclusion

Parallel-Correctness

Transferability

Conclusion

Coordination-free evaluation

Multi-Query optimization

## Motivation

- Many systems rely on coordination for communication
  For example: MapReduce-like systems
- ► Avoiding coordination completely is not possible
- Minimize the number of communication steps
  Ideally: one round

(1-Round MPC model [Koutris & Suciu 2011])

Input = query Q



(1-Round MPC model [Koutris & Suciu 2011])

Input = query Q





(1-Round MPC model [Koutris & Suciu 2011])

Input = query Q



(1-Round MPC model [Koutris & Suciu 2011])

Input = query Q



Output = union of output at each server

### **Multi-Query Evaluation & optimization**

**Workload:**  $Q_1, Q_2, \ldots, Q_n$  + fixed database



. . .

**Goal:** To formally reason about **single-round** query evaluation and **multi-query optimization** in systems where communication implies a synchronization barrier

Focus: conjunctive queries





Output = union of output at each server

# Main question 1

Given target query and distribution policy:

#### Do we need to reshuffle?

# Main question 1

Given target query and distribution policy:

Do we need to reshuffle?

**Parallel-Correctness** 

# Main question 1

Given target query and distribution policy:

Do we need to reshuffle?

**Parallel-Correctness** 

### Main question 2

Given target query and previously computed query:

Do we need to reshuffle?

# Main question 1

Given target query and distribution policy:

Do we need to reshuffle?

**Parallel-Correctness** 

## Main question 2

Given target query and previously computed query:

Do we need to reshuffle?

Transferability

# Outline

## CALM Formalization

CALM Revision 1

Conclusion

Parallel-Correctness

Transferability

Conclusion

Coordination-free evaluation

Multi-Query optimization

Given target query and distribution policy:

Do we need to reshuffle?

Given target query and distribution policy:

### Do we need to reshuffle?

Semantical correctness of simple evaluation algorithm

Given target query and distribution policy:

#### Do we need to reshuffle?

Semantical correctness of simple evaluation algorithm

# Definition

Q is parallel-correct w.r.t. P, iff for every database I

$$\mathcal{Q}(I) = \bigcup_{\kappa \in \mathcal{N}} \mathcal{Q}(dist_{\mathbf{P},I}(\kappa))$$

Given target query and distribution policy:

### Do we need to reshuffle?

Semantical correctness of simple evaluation algorithm

# Definition

Q is parallel-correct w.r.t. P, iff for every database I

$$\mathcal{Q}(I) = \bigcup_{\kappa \in \mathcal{N}} \mathcal{Q}(dist_{\mathbf{P},I}(\kappa))$$
$$\supseteq \text{ by monotonicity}$$
#### **Parallel-Correctness Complexity**



(needs policy representation)

#### **Other use of Parallel-Correctness**



Parallel-correct for  $\mathcal{Q}_1$ 

#### **Other use of Parallel-Correctness**



Parallel-correct for  $\mathcal{Q}_1$ 

#### **Possible Problems**

- ▶ Reasoning about distribution policies is complex
- ► Not every distribution policy is equally efficient
- ► Choice of policy may be hidden behind abstraction layer
- ► Reasoning about query order before policies are known

# Outline

# CALM Formalization

CALM Revision 1

Conclusion

Parallel-Correctness

Transferability

Conclusion

Coordination-free evaluation

Multi-Query optimization

Given target query and previously computed query:

Do we need to reshuffle?

Given target query and previously computed query:

Do we need to reshuffle?

#### Definition

 $\mathcal{Q} \to_T \mathcal{Q}'$  iff  $\mathcal{Q}'$  is parallel-correct on every P where  $\mathcal{Q}$  is parallel-correct on

Given target query and previously computed query:

#### Do we need to reshuffle?

Parallel-correct for  $Q_1$ 

Given target query and previously computed query:

#### Do we need to reshuffle?

Parallel-correct for  $Q_1$ 

Parallel-correct for  $\mathcal{Q}_2$ 

Given target query and previously computed query:

#### Do we need to reshuffle?

Parallel-correct for  $\mathcal{Q}_1$ 

Parallel-correct for  $\mathcal{Q}_2$ 

Very strong property

like query containment, but for parallel and distributed setting

# Complexity

|       | Parallel-correctness* | Transferability |
|-------|-----------------------|-----------------|
| CQ    | $\Pi_p^2$ -C          | $\Pi_p^3$ -C    |
| UCQ   | $\Pi_p^2$ -c          | $\Pi_p^3$ -C    |
| UCQ≠  | $\Pi_p^2$ -C          | $\Pi_p^3$ -C    |
| FO    | undecidable           | undecidable     |
| sm-CQ | Х                     | NP-c            |

(\*needs policy representation)

[Ameloot,Geck,Ketsman,Neven,Schwentick PODS 2015 best paper; Sigmod record 2016; CACM 2017; JACM (accepted)]

# Outline

# CALM Formalization

CALM Revision 1

Conclusion

Parallel-Correctness

Transferability

Conclusion

Coordination-free evaluation

Multi-Query optimization

**Goal:** To formally reason about **single-round** query evaluation and **multi-query optimization** in systems where communication implies a synchronization barrier

- A formal framework for reasoning about the correctness of single-round query evaluation and query optimization via distribution policies.
- ► Parallel-correctness: semantical correctness
- Transferability: like "containment" but for parallel and distributed query evaluation

#### **Open Questions & Future Work**

- ► How do parallel-correctness and transferability relate to query evaluation in practice?
- ► How much data needs to be reshuffled?

#### **Open Questions & Future Work**

- ► How do parallel-correctness and transferability relate to query evaluation in practice?
- ► How much data needs to be reshuffled?

# **Related Work**

▶ Parallel-correctness for CQs with negation

[Geck, Ketsman, Neven, Schwentick ICDT 2016]

 Extension of Parallel-correctness to reason about multi-round evaluation with with Datalog

[Ketsman, Koutris, Albarghouti, submitted]

► Bag-semantics

ongoing

Thank you!