
Formal approaches to:

Coordination-free query evaluation and
multi-query optimization in parallel and

distributed systems

Bas Ketsman

Outline

CALM Formalization

CALM Revision 1

Conclusion

Parallel-Correctness

Transferability

Conclusion

2 / 46

Coordination-free evaluation

Multi-Query optimization

Introduction

Context: Declarative Networking, where Datalog based
languages are used for parallel and distributed computing in
clusters with disordered communication.

CALM-conjecture: No-coordination ?
= Monotonicity

[Hellerstein, 2010]

[Ameloot, Neven, Van den Bussche, 2011]: TRUE

▶ for a setting where nodes have no information about the
horizontal-distribution of records

[Zinn, Green, Ludäscher, 2012]: FALSE

▶ for settings where nodes have information about the
horizontal-distribution of record

3 / 46

Introduction

Context: Declarative Networking, where Datalog based
languages are used for parallel and distributed computing in
clusters with disordered communication.

CALM-conjecture: No-coordination ?
= Monotonicity

[Hellerstein, 2010]

[Ameloot, Neven, Van den Bussche, 2011]: TRUE

▶ for a setting where nodes have no information about the
horizontal-distribution of records

[Zinn, Green, Ludäscher, 2012]: FALSE

▶ for settings where nodes have information about the
horizontal-distribution of record

3 / 46

Introduction

Context: Declarative Networking, where Datalog based
languages are used for parallel and distributed computing in
clusters with disordered communication.

CALM-conjecture: No-coordination ?
= Monotonicity

[Hellerstein, 2010]

[Ameloot, Neven, Van den Bussche, 2011]: TRUE

▶ for a setting where nodes have no information about the
horizontal-distribution of records

[Zinn, Green, Ludäscher, 2012]: FALSE

▶ for settings where nodes have information about the
horizontal-distribution of record

3 / 46

Introduction

Context: Declarative Networking, where Datalog based
languages are used for parallel and distributed computing in
clusters with disordered communication.

CALM-conjecture: No-coordination ?
= Monotonicity

[Hellerstein, 2010]

[Ameloot, Neven, Van den Bussche, 2011]: TRUE
▶ for a setting where nodes have no information about the

horizontal-distribution of records

[Zinn, Green, Ludäscher, 2012]: FALSE

▶ for settings where nodes have information about the
horizontal-distribution of record

3 / 46

Introduction

Context: Declarative Networking, where Datalog based
languages are used for parallel and distributed computing in
clusters with disordered communication.

CALM-conjecture: No-coordination ?
= Monotonicity

[Hellerstein, 2010]

[Ameloot, Neven, Van den Bussche, 2011]: TRUE
▶ for a setting where nodes have no information about the

horizontal-distribution of records

[Zinn, Green, Ludäscher, 2012]: FALSE
▶ for settings where nodes have information about the

horizontal-distribution of record

3 / 46

Goal: To clarify the relation between monotonicity
and coordination in asynchronous systems
and to reveal the more complete picture

Outline

CALM Formalization

CALM Revision 1

Conclusion

Parallel-Correctness

Transferability

Conclusion

5 / 46

Coordination-free evaluation

Multi-Query optimization

Monotonicity

Definition
A query Q is monotone if Q(I) ⊆ Q(I ∪ J) for all database
instances I and J.

Notation: M = class of monotone queries

Example

▶ Q∆: Select triangles in a graph ∈M
▶ Q<: Select open triangles in a graph ̸∈ M

6 / 46

Monotonicity

Definition
A query Q is monotone if Q(I) ⊆ Q(I ∪ J) for all database
instances I and J.

Notation: M = class of monotone queries

Example

▶ Q∆: Select triangles in a graph ∈M
▶ Q<: Select open triangles in a graph ̸∈ M

6 / 46

Monotonicity

Definition
A query Q is monotone if Q(I) ⊆ Q(I ∪ J) for all database
instances I and J.

Notation: M = class of monotone queries

Example

▶ Q∆: Select triangles in a graph ∈M

▶ Q<: Select open triangles in a graph ̸∈ M

6 / 46

Monotonicity

Definition
A query Q is monotone if Q(I) ⊆ Q(I ∪ J) for all database
instances I and J.

Notation: M = class of monotone queries

Example

▶ Q∆: Select triangles in a graph ∈M
▶ Q<: Select open triangles in a graph ̸∈ M

6 / 46

Relational Transducer Networks

[Ameloot, Neven, Van den Bussche, 2011]

▶ Network
N = {x, y, u, z}

▶ Transducer Π
▶ messages can be

arbitrarily delayed but
never get lost

Semantics defined in terms of runs over a transition system

7 / 46

Relational Transducer Networks

[Ameloot, Neven, Van den Bussche, 2011]

▶ Network
N = {x, y, u, z}

▶ Transducer Π
▶ messages can be

arbitrarily delayed but
never get lost

Semantics defined in terms of runs over a transition system
7 / 46

Eventual Consistent Query Evaluation

Definition
A transducer Π computes a query Q if

▶ for all networks N , Network independent
▶ for all databases I, Distribution independent
▶ for all horizontal distributions H, and
▶ for every run of Π,

out(Π) = Q(I).

Consistency requirement

8 / 46

Example: Q∆ : select all triangles

9 / 46

Algorithm:
▶ Broadcast all data
▶ output triangles

whenever new data
arrives

Extremely naive, but works .. and is coordination-free!

Example: Q∆ : select all triangles

9 / 46

Algorithm:
▶ Broadcast all data
▶ output triangles

whenever new data
arrives

Extremely naive, but works .. and is coordination-free!

Example: Q∆ : select all triangles

9 / 46

Algorithm:
▶ Broadcast all data
▶ output triangles

whenever new data
arrives

Extremely naive, but works .. and is coordination-free!

Example: Q∆ : select all triangles

9 / 46

Algorithm:
▶ Broadcast all data
▶ output triangles

whenever new data
arrives

Extremely naive, but works .. and is coordination-free!

Example: Q∆ : select all triangles

9 / 46

Algorithm:
▶ Broadcast all data
▶ output triangles

whenever new data
arrives

Extremely naive, but works .. and is coordination-free!

Example: Q< : select all open triangles

10 / 46

Coordination is needed to reason about the absence of records.

Example: Q< : select all open triangles

?

10 / 46

Coordination is needed to reason about the absence of records.

Example: Q< : select all open triangles

?

? ?

no no

10 / 46

Coordination is needed to reason about the absence of records.

Example: Q< : select all open triangles

? ?

no no

10 / 46

Coordination is needed to reason about the absence of records.

Coordination-freeness

Goal: separate data-communication from
coordination-communication

Definition
Π is coordination-free if for all inputs I there is a distribution on
which Π computes Q(I) without having to do communication.

[Ameloot, Neven, Van den Bussche, 2011]

11 / 46

Coordination-freeness

Goal: separate data-communication from
coordination-communication

Definition
Π is coordination-free if for all inputs I there is a distribution on
which Π computes Q(I) without having to do communication.

[Ameloot, Neven, Van den Bussche, 2011]

11 / 46

Example: Ideal Distribution
Q∆: select all triangles

12 / 46

Algorithm:
▶
▶ Output triangles

whenever new data
arrives

Example: Ideal Distribution
Q∆: select all triangles

12 / 46

Algorithm:
▶ Broadcast all data
▶ Output triangles

whenever new data
arrives

Example: Ideal Distribution
Q∆: select all triangles

12 / 46

Algorithm:
▶ (Broadcast all data)
▶ Output triangles

whenever new data
arrives

CALM-conjecture

[Ameloot, Neven, Van den Bussche, 2011]

A query has a coordination-free and eventually
consistent execution strategy

iff
the query is monotone

Theorem
F0 =M

Definition
F0 = set of queries which are distributedly computed by
coordination-free transducers

13 / 46

Outline

CALM Formalization

CALM Revision 1

Conclusion

Parallel-Correctness

Transferability

Conclusion

14 / 46

Coordination-free evaluation

Multi-Query optimization

Policy-aware Transducers

. . .

15 / 46

“Distribution policy”

Policy-aware Transducers

. . .
. . .

. . .

15 / 46

“Distribution policy”

Policy-aware Transducers

Deduction rules

▶ in local database⇒ in global database
▶ not in local database + in scope⇒ not in global database
▶ not in local database + not in scope⇒ unknown

16 / 46

Policy-aware Transducers

. . .

?

. . .

. . .

17 / 46

“Distribution policy”

Policy-aware Transducers

. . .
. . .

. . .

17 / 46

“Distribution policy”

Policy-aware Transducers

[Zinn, Green, Ludäscher, 2012]

Definition
A distribution policy P for σ and N is a total function from
facts(σ) to the power set of N .

Definition
A policy-aware transducer is a transducer with access to P
restricted to its active domain

Definition
F1 = set of queries which are distributedly computed by
policy-aware coordination-free transducers

18 / 46

Domain-distinct-monotonicity

Definition
A fact f is domain distinct from instance I when
adom(f) ̸⊆ adom(I).

Example

I f

X
f ′

19 / 46

Domain-distinct-monotonicity

Definition
A query Q is domain-distinct-monotone if Q(I) ⊆ Q(I ∪ J) for
all I and J, with J having only domain-distinct facts

Notation: Mdistinct = domain-distinct-monotone queries

M
Mdistinct

Remark
Mdistinct: class of queries preserved under extensions

20 / 46

Domain-distinct-monotonicity

Example
Select open triangles in graph ∈Mdistinct.

I Q(I)

Not domain-distinct from I

21 / 46

Domain-distinct-monotonicity

Example
Select open triangles in graph ∈Mdistinct.

I Q(I)

Not domain-distinct from I

21 / 46

Revised CALM-conjecture

A query has a coordination-free and eventually
consistent execution strategy under distribution

policies
iff

the query is domain-distinct-monotone

Theorem
F1 =Mdistinct

Definition
F1 = set of queries which are distributedly computed by
policy-aware coordination-free transducers

22 / 46

Proof idea ofMdistinct ⊆ F1

For domain-distinct-monotone queries:
▶ broadcast all present and deduced absent facts
▶ Evaluate query on complete sets

Example: Q<: Select open triangles in a graph

Computing node behaviour:

23 / 46

Proof idea ofMdistinct ⊆ F1

For domain-distinct-monotone queries:
▶ broadcast all present and deduced absent facts
▶ Evaluate query on complete sets

Example: Q<: Select open triangles in a graph

Computing node behaviour:

? ∅

23 / 46

Proof idea ofMdistinct ⊆ F1

For domain-distinct-monotone queries:
▶ broadcast all present and deduced absent facts
▶ Evaluate query on complete sets

Example: Q<: Select open triangles in a graph

Computing node behaviour:

?

?

?
∅

23 / 46

Proof idea ofMdistinct ⊆ F1

For domain-distinct-monotone queries:
▶ broadcast all present and deduced absent facts
▶ Evaluate query on complete sets

Example: Q<: Select open triangles in a graph

Computing node behaviour:

?
?

23 / 46

Proof idea ofMdistinct ⊆ F1

For domain-distinct-monotone queries:
▶ broadcast all present and deduced absent facts
▶ Evaluate query on complete sets

Example: Q<: Select open triangles in a graph

Computing node behaviour:

?

23 / 46

Proof idea ofMdistinct ⊆ F1

For domain-distinct-monotone queries:
▶ broadcast all present and deduced absent facts
▶ Evaluate query on complete sets

Example: Q<: Select open triangles in a graph

Computing node behaviour:

23 / 46

Complete Picture

Datalog(̸=)⊋wILOG(̸=)=M=F0
⊊⊊⊊⊊

SP-Datalog⊋SP-wILOG=Mdistinct=F1

⊊⊊⊊⊊

semicon-Datalog¬⊋semicon-wILOG¬=Mdisjoint=F2

DatalogDatalog +
value invention

MonotonicityCoordination
freeness

[Ameloot, Ketsman, Neven, Zinn PODS 2014 best paper; TODS 2016]

24 / 46

Outline

CALM Formalization

CALM Revision 1

Conclusion

Parallel-Correctness

Transferability

Conclusion

25 / 46

Coordination-free evaluation

Multi-Query optimization

Goal: To clarify the relation between monotonicity
and coordination in asynchronous systems
and to reveal the more complete picture

▶ A four-level quantification of coordination exists in terms of
the amount of information needed for the query to become
coordination-free

▶ The CALM conjecture reveals a very robust relation
between coordination and non-monotonic behaviour of
queries

Open Questions & Future Work

▶ How to compute queries without coordination and with
less communication?

▶ How to compute queries with “some” coordination?

Related Work

▶ Oblivious broadcasting algorithms = broadcast fragment
of local database [Ketsman, Neven ICDT 2015; ToCS 2016]

▶ A worst-case optimal load algorithm for join evaluation
[Ketsman, Suciu, PODS 2017]

27 / 46

Open Questions & Future Work

▶ How to compute queries without coordination and with
less communication?

▶ How to compute queries with “some” coordination?

Related Work

▶ Oblivious broadcasting algorithms = broadcast fragment
of local database [Ketsman, Neven ICDT 2015; ToCS 2016]

▶ A worst-case optimal load algorithm for join evaluation
[Ketsman, Suciu, PODS 2017]

27 / 46

Outline

CALM Formalization

CALM Revision 1

Conclusion

Parallel-Correctness

Transferability

Conclusion

28 / 46

Coordination-free evaluation

Multi-Query optimization

Motivation

▶ Many systems rely on coordination for communication
For example: MapReduce-like systems

▶ Avoiding coordination completely is not possible
▶ Minimize the number of communication steps

Ideally: one round

29 / 46

Single-Round Evaluation Algorithm

(1-Round MPC model [Koutris & Suciu 2011])

Q Q Q

Redistribution

Input = query Q

Output = union of output at each server

30 / 46

Single-Round Evaluation Algorithm

(1-Round MPC model [Koutris & Suciu 2011])

Q Q Q

RedistributionStep 1:

Input = query Q

Output = union of output at each server

30 / 46

Single-Round Evaluation Algorithm

(1-Round MPC model [Koutris & Suciu 2011])

Q Q Q

RedistributionStep 1:

Step 2:

Input = query Q

Output = union of output at each server

30 / 46

Single-Round Evaluation Algorithm

(1-Round MPC model [Koutris & Suciu 2011])

Q Q Q

RedistributionStep 1:

Step 2:

Input = query Q

Output = union of output at each server
30 / 46

Multi-Query Evaluation & optimization

Workload: Q1,Q2, . . . ,Qn + fixed database

Redistribution

I →

Q1(I)←

Redistribution

Q2(I)←

Redistribution

Q3(I)←

· · ·

31 / 46

Goal: To formally reason about single-round query
evaluation and multi-query optimization in systems
where communication implies a synchronization barrier

Focus: conjunctive queries

Single-Round Evaluation Algorithm

(1-Round MPC model [Koutris & Suciu 2011])

Q Q Q

RedistributionStep 1:

Step 2:

Modeled by a
distribution policy P

Input = query Q

Output = union of output at each server
33 / 46

Can a reshuffle step be avoided?

Main question 1
Given target query and distribution policy:

Do we need to reshuffle?

Parallel-Correctness

Main question 2
Given target query and previously computed query:

Do we need to reshuffle?

Transferability

34 / 46

Can a reshuffle step be avoided?

Main question 1
Given target query and distribution policy:

Do we need to reshuffle?

Parallel-Correctness

Main question 2
Given target query and previously computed query:

Do we need to reshuffle?

Transferability

34 / 46

Can a reshuffle step be avoided?

Main question 1
Given target query and distribution policy:

Do we need to reshuffle?

Parallel-Correctness

Main question 2
Given target query and previously computed query:

Do we need to reshuffle?

Transferability

34 / 46

Can a reshuffle step be avoided?

Main question 1
Given target query and distribution policy:

Do we need to reshuffle?

Parallel-Correctness

Main question 2
Given target query and previously computed query:

Do we need to reshuffle?

Transferability

34 / 46

Outline

CALM Formalization

CALM Revision 1

Conclusion

Parallel-Correctness

Transferability

Conclusion

35 / 46

Coordination-free evaluation

Multi-Query optimization

Parallel-Correctness

Given target query and distribution policy:

Do we need to reshuffle?

Semantical correctness of simple evaluation algorithm

Definition
Q is parallel-correct w.r.t. P , iff for every database I

Q(I) =
∪
κ∈N
Q(distP ,I(κ))

⊇ by monotonicity

36 / 46

Parallel-Correctness

Given target query and distribution policy:

Do we need to reshuffle?

Semantical correctness of simple evaluation algorithm

Definition
Q is parallel-correct w.r.t. P , iff for every database I

Q(I) =
∪
κ∈N
Q(distP ,I(κ))

⊇ by monotonicity

36 / 46

Parallel-Correctness

Given target query and distribution policy:

Do we need to reshuffle?

Semantical correctness of simple evaluation algorithm

Definition
Q is parallel-correct w.r.t. P , iff for every database I

Q(I) =
∪
κ∈N
Q(distP ,I(κ))

⊇ by monotonicity

36 / 46

Parallel-Correctness

Given target query and distribution policy:

Do we need to reshuffle?

Semantical correctness of simple evaluation algorithm

Definition
Q is parallel-correct w.r.t. P , iff for every database I

Q(I) =
∪
κ∈N
Q(distP ,I(κ))

⊇ by monotonicity

36 / 46

Parallel-Correctness Complexity

CQ Π2
p-c

UCQ Π2
p-c

UCQ ̸= Π2
p-c

FO undecidable

(needs policy representation)

37 / 46

Other use of Parallel-Correctness

Parallel-correct for Q1

Parallel-correct for Q2

38 / 46

Other use of Parallel-Correctness

Parallel-correct for Q1

Parallel-correct for Q2

38 / 46

Possible Problems

▶ Reasoning about distribution policies is complex
▶ Not every distribution policy is equally efficient
▶ Choice of policy may be hidden behind abstraction layer
▶ Reasoning about query order before policies are known

39 / 46

Outline

CALM Formalization

CALM Revision 1

Conclusion

Parallel-Correctness

Transferability

Conclusion

40 / 46

Coordination-free evaluation

Multi-Query optimization

Transferability

Given target query and previously computed query:

Do we need to reshuffle?

41 / 46

Transferability

Given target query and previously computed query:

Do we need to reshuffle?

Definition
Q →T Q′ iff Q′ is parallel-correct on every P where Q is
parallel-correct on

41 / 46

Transferability

Given target query and previously computed query:

Do we need to reshuffle?
Parallel-correct for Q1

Parallel-correct for Q2

Very strong property
like query containment, but for parallel and distributed setting

41 / 46

Transferability

Given target query and previously computed query:

Do we need to reshuffle?
Parallel-correct for Q1

Parallel-correct for Q2

Very strong property
like query containment, but for parallel and distributed setting

41 / 46

Transferability

Given target query and previously computed query:

Do we need to reshuffle?
Parallel-correct for Q1

Parallel-correct for Q2

Very strong property
like query containment, but for parallel and distributed setting

41 / 46

Complexity

Parallel-correctness∗ Transferability
CQ Π2

p-c Π3
p-c

UCQ Π2
p-c Π3

p-c
UCQ ̸= Π2

p-c Π3
p-c

FO undecidable undecidable
sm-CQ X NP-c

(∗needs policy representation)

[Ameloot,Geck,Ketsman,Neven,Schwentick PODS 2015 best paper;
Sigmod record 2016; CACM 2017; JACM (accepted)]

42 / 46

Outline

CALM Formalization

CALM Revision 1

Conclusion

Parallel-Correctness

Transferability

Conclusion

43 / 46

Coordination-free evaluation

Multi-Query optimization

Goal: To formally reason about single-round query
evaluation and multi-query optimization in systems
where communication implies a synchronization barrier

▶ A formal framework for reasoning about the correctness of
single-round query evaluation and query optimization via
distribution policies.

▶ Parallel-correctness: semantical correctness
▶ Transferability: like “containment” but for parallel and

distributed query evaluation

Open Questions & Future Work

▶ How do parallel-correctness and transferability relate to
query evaluation in practice?

▶ How much data needs to be reshuffled?

Related Work

▶ Parallel-correctness for CQs with negation
[Geck, Ketsman, Neven, Schwentick ICDT 2016]

▶ Extension of Parallel-correctness to reason about
multi-round evaluation with with Datalog

[Ketsman, Koutris, Albarghouti, submitted]

▶ Bag-semantics
ongoing

45 / 46

Open Questions & Future Work

▶ How do parallel-correctness and transferability relate to
query evaluation in practice?

▶ How much data needs to be reshuffled?

Related Work

▶ Parallel-correctness for CQs with negation
[Geck, Ketsman, Neven, Schwentick ICDT 2016]

▶ Extension of Parallel-correctness to reason about
multi-round evaluation with with Datalog

[Ketsman, Koutris, Albarghouti, submitted]

▶ Bag-semantics
ongoing

45 / 46

Thank you!

	CALM Formalization
	CALM Revision 1
	Conclusion
	Parallel-Correctness
	Transferability
	Conclusion

