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CALM

coordination-free

Algorithm in distributed system

Coordination

no negation

Declarative Program

negation

coordination-free

no negation

?

Programming asynchronous
distributed systems in a declarative
language

Theorem (CALM Theorem)
Monotone Programs =
Coordination-Free Programs

- Conjecture: [Hellerstein 2010]
- Proof for queries: [Ameloot,
Neven, Van den Bussche 2011]
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Formalization
[Ameloot, Neven, Van den Bussche 2011]

Queries

Monotone

Coordination-
free

computable

- Programs computing queries
▶ Semantic objects
▶ data-, network-, partition-independent

- Asynchronous shared-nothing system with at-least
once message arrival guarantees
▶ Write-only output relations

- An algorithm computes a query if the output relations
eventually represent the output

- An algorithm is coordination-free if for every network
and input database there is an “ideal” data partitioning
for which the algorithm generates the query answer
before any communication is done.
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Algorithms for asynchronous distributed systems
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negation

coordination-free
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Algorithms for asynchronous distributed systems

Coordination

negation

coordination-free

Pos-Datalog( ̸=)

Sp-Datalog( ̸=) query

Monotone

Coordination-
free

computable
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Textbook Datalog
[Afrati, Cosmadakis, Yannakakis 1995]

Positive Datalog Program

Datalog with Negation

Pos-Datalog

Pos-Datalog( ̸=)

Monotone

Preserved under Homomorphisms

Monotone

Sp-Datalog

Sp-Datalog( ̸=)

Str-Datalog

· · ·

Not necessarily Monotone

Semi-Monotone / Preserved under Extensions

Semi-Monotone / Preserved under Extensions
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A Monotone Sp-Datalog( ̸=) Example

Input: Graph with green (R), blue (S),
and black (T) edges

Sp-Datalog Program P :

T1(x, y)← R(x, y),¬S(y, z), T(z, x).
T2(x, y)← R(x, y), S(y, z),¬T(z, x).

O()← T1(x, y), T2(x, y).
O()← R(x, y), S(y, z), T(z, x), x ̸= y.

Output: Binary output relation O
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Naive Rewriting: Remove Negated Atoms

Input: Graph with green (R), blue (S),
and black (T) edges

Sp-Datalog Program P :

T1(x, y)← R(x, y),����XXXX¬S(y, z), T(z, x).
T2(x, y)← R(x, y), S(y, z),�����XXXXX¬T(z, x).

O()← T1(x, y), T2(x, y).
O()← R(x, y), S(y, z), T(z, x), x ̸= y.

Output: Binary output relation O
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Candidate Proof-Trees with Fringe-Conflicts

(Proof-trees decoupled from a particular database instance)

R(a, a) T (a, a) R(a, a) S(a, a)

T1(a, a) T2(a, a)

O()

Proof-tree for P+
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O()

Candidate proof-treea for P
with fringe conflicts

(aIn paper: candidate proof-tree without inequality conflicts)
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Proof-Tree Perspective

Theorem
For monotone Sp-Datalogconflict-free( ̸=) programs whose candidate proof-trees are
without fringe conflicts, negated atoms can be left away without influencing the
program semantics.
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Making Programs Conflict-Free
Crux: Pass information about forbidden facts to other rules via IDBs and exclude
conflicts via disequalities

T1(x, y)← R(x, y),¬S(y, z), T(z, x).
T2(x, y)← R(x, y), S(y, z),¬T(z, x).

O()← T1(x, y), T2(x, y).
O()← R(x, y), S(y, z), T(z, x), x ̸= y.

R(a, a) ¬S(a, a) T (a, a) R(a, a) S(a, a) ¬T (a, a)

T1(a, a) T2(a, a)

O()
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Making Programs Conflict-Free

Crux: Pass information about forbidden facts to other rules via IDBs and exclude
conflicts through disequalities

Adom(x)← “active domain of R, S, and T ”
T1(x, y, y, z, z′′, x′′)← R(x, y),¬S(y, z), T(z, x), Adom(z′′), Adom(x′′), z ̸= z′′.

T1(x, y, y, z, z′′, x′′)← R(x, y),¬S(y, z), T(z, x), Adom(z′′), Adom(x′′), x ̸= x′′.

T2(x, y, y′, z′, z, x)← R(x, y), S(y, z),¬T(z, x), Adom(y′), Adom(z′), y ̸= y′.

T2(x, y, y′, z′, z, x)← R(x, y), S(y, z),¬T(z, x), Adom(y′), Adom(z′), z ̸= z′.

O()← T1(x, y, y′, z′, z′′, x′′), T2(x, y, y′, z′, z′′, x′′).
O()← R(x, y), S(y, z), T(z, x), x ̸= y.

Equivalent to original program and candidate proof-trees have no fringe conflicts
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Making Programs Conflict-Free

Crux: Pass information about forbidden facts to other rules via IDBs and exclude
conflicts with disequalities

Adom(x)← “active domain of R, S, and T ”
T1(x, y, y, z, z′′, x′′)← R(x, y),����XXXX¬S(y, z), T(z, x), Adom(z′′), Adom(x′′), z ̸= z′′.

T1(x, y, y, z, z′′, x′′)← R(x, y),����XXXX¬S(y, z), T(z, x), Adom(z′′), Adom(x′′), x ̸= x′′.

T2(x, y, y′, z′, z, x)← R(x, y), S(y, z),�����XXXXX¬T(z, x), Adom(y′), Adom(z′), y ̸= y′.

T2(x, y, y′, z′, z, x)← R(x, y), S(y, z),�����XXXXX¬T(z, x), Adom(y′), Adom(z′), z ̸= z′.

O()← T1(x, y, y′, z′, z′′, x′′), T2(x, y, y′, z′, z′′, x′′).
O()← R(x, y), S(y, z), T(z, x), x ̸= y.

Equivalent to original program, even without negated atoms
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Negation-Bounded Datalog

When does such a rewriting exist?
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Negation-Bounded Datalog

When does such a rewriting exist?

- For all programs with a bounded number of forbidden facts in their
proof-tree fringes;

- [K, Koch, 2020]
- For all programs with a bounded number of required facts in their
proof-tree fringes.

- Symmetric case
- For all programs without non-equalities

▶ Because Sp-Datalog ∩Monotone = Sp-Datalog ∩ Hom
▶ Sp-Datalog ∩ Hom = Pos-Datalog [Feder, Vardi, 2003]
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Counterexample Ingredients

Heavily based on: [Rudolph, Thomazo 2015]

Definition
Given a graph, the perfect matching problem asks if there is a subset M of its
edges such that every vertex of the graph is incident to precisely one edge in M .

- A polynomial-time computable query.
- All polynomial-time computable queries are expressible in order-invariant
SP-datalog [Papadimitriou 1985]
▶ Succ[2] encoding some linear order over adom;
▶ Min[1] and Max[1] denoting minimal and maximal element.

19



Separating Query

Input: instance over {Edge[2],Succ[2],Min[1],Max[1]}.

Output:
- True if Succ, Min, Max encode an inconsistency

▶ Some negation-free rules
▶ We cannot fix such an inconsistency by adding more facts

- True if Succ, Min, Max contain a complete total order and the graph
induced by the active domain elements between Min and Max in Next
has a perfect matching.

▶ Some negation-free rules + order invariant SP-Datalog program with Succ, Min,
Max given as part of input

▶ We cannot undo existence of a perfect matching by adding more facts

- False (∅) otherwise.

Sp-Datalog( ̸=) query | monotone

20



Separating Query

Input: instance over {Edge[2],Succ[2],Min[1],Max[1]}.

Output:
- True if Succ, Min, Max encode an inconsistency

▶ Some negation-free rules

▶ We cannot fix such an inconsistency by adding more facts

- True if Succ, Min, Max contain a complete total order and the graph
induced by the active domain elements between Min and Max in Next
has a perfect matching.
▶ Some negation-free rules + order invariant SP-Datalog program with Succ, Min,

Max given as part of input

▶ We cannot undo existence of a perfect matching by adding more facts

- False (∅) otherwise.

Sp-Datalog( ̸=) query | monotone

20



Separating Query

Input: instance over {Edge[2],Succ[2],Min[1],Max[1]}.

Output:
- True if Succ, Min, Max encode an inconsistency

▶ Some negation-free rules
▶ We cannot fix such an inconsistency by adding more facts

- True if Succ, Min, Max contain a complete total order and the graph
induced by the active domain elements between Min and Max in Next
has a perfect matching.
▶ Some negation-free rules + order invariant SP-Datalog program with Succ, Min,

Max given as part of input
▶ We cannot undo existence of a perfect matching by adding more facts

- False (∅) otherwise.

Sp-Datalog( ̸=) query | monotone

20



Separating Query ̸∈ Pos-Datalog( ̸=)

Theorem ([Razborov 85])
No family of monotone Boolean circuits exists that answer the perfect matching
problem and has circuits of polynomial size in the number of input gates.

Claim: If there is a Pos-Datalog( ̸=) program P expressing the separating query,
then there is a Boolean circuit contradicting the above result.

21



Proof by construction
For a graph with v vertices, consider a Boolean circuit with v2 input gates, one
per possible edge. The gate is set to 1 iff the edge is in the graph.
1. Consider all groundings of rules in P over domain {1, . . . , v}.
2. Assume natural order over these values as interpretation for First, Last,

Next and remove all grounded rules that contradict with it.
3. Remove all facts over interpreted relation names.
4. Make copies of rules organized in strata. First strata copies all EDBS to index

0. For next stratum all atoms in body have index i and those in heads have
index i+ 1. We need only as many strata as we need rounds to finish
programs over domain {1 . . . v}.

5. EDB atoms = input gates, rules are AND gates whose inputs are the gates
whose output represents body atoms; IDBs become OR gates whose inputs
are the gates represented by rules that produce the ground atoms.
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A More Fine-Grained Answer to the CALM Conjecture
Systems in which data is arbitrarily partitioned.

Theorem ([Ameloot, Neven, Van den Bussche, 2011])
Cq(Id + All) ∩ Coordination-Free = Monotone

24
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A More Fine-Grained Answer to the CALM Conjecture
Systems in which data is arbitrarily partitioned.

Theorem ([Ameloot, Neven, Van den Bussche, 2011])
Cq(Id + All) ∩ Coordination-Free = Monotone

Theorem ([Ameloot, K, Neven, Zinn, 2014])
Cq(Id + All + Policy) ∩ Coordination-Free = Semi-Monotone

Systems in which data is partitioned using a value-based strategy.
- For every possible data value in the database there is a node that knows it
would store all tuples in the database containing that data value.

Theorem ([Ameloot, K, Neven, Zinn, 2014])
Cq(Id + All + AdomPolicy) ∩ Coordination-Free = Disjoint-Monotone
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From Queries to Behaviors
Definition
A distributed behavior is a non-deterministic mapping from distributed
instances to distributed instances

R()@1
R()@2
R()@3

L(1)@1
L(1)@2
L(1)@3

L(2)@1
L(2)@2
L(2)@3

L(3)@1
L(3)@2
L(3)@3

Leader election

(Queries are specific types of distributed behaviors)
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Configuration Constraints
Information made available to nodes in the form of interpreted relations or
functions defined as a behavior.

[Ameloot, Neven, Van den Bussche 2011]
- Id: relation containing the unique ID of the node at hand;
- All: relation containing all IDs of nodes in the network;

[Ameloot, K, Neven, Zinn 2014]
- Policy: function mapping a fact to true iff the node is responsible for it;
- AdomPolicy: similar as previous but based on data values of tuples;

Many other options:
- L: relation containing the ID of some node considered leader in the network;
- Order: function mapping two data values a, b on true iff a < b according to
some coordinated order.

- …
(can be combined)
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Computing Behaviors

Is a certain behavior computable in our model for a specific set of constraints?

Is leader election computable without configuration constraints?

R()@1
R()@2
R()@3

+
Id(1)@1
Id(2)@2
Id(3)@3

+
All(1)@1,All(2)@1,All(3)@1
All(1)@2,All(2)@2,All(3)@2
All(1)@3,All(2)@3,All(3)@3

+
≤@1
≤@2
≤@3

L(1)@1
L(1)@2
L(1)@3

L(2)@1
L(2)@2
L(2)@3

L(3)@1
L(3)@2
L(3)@3

27



Computing Behaviors

Is a certain behavior computable in our model for a specific set of constraints?

Is leader election computable with Id?

R()@1
R()@2
R()@3

+
Id(1)@1
Id(2)@2
Id(3)@3

+
All(1)@1,All(2)@1,All(3)@1
All(1)@2,All(2)@2,All(3)@2
All(1)@3,All(2)@3,All(3)@3

+
≤@1
≤@2
≤@3

L(1)@1
L(1)@2
L(1)@3

L(2)@1
L(2)@2
L(2)@3

L(3)@1
L(3)@2
L(3)@3

27



Computing Behaviors

Is a certain behavior computable in our model for a specific set of constraints?

Is leader election computable with Id + All?

R()@1
R()@2
R()@3

+
Id(1)@1
Id(2)@2
Id(3)@3

+
All(1)@1,All(2)@1,All(3)@1
All(1)@2,All(2)@2,All(3)@2
All(1)@3,All(2)@3,All(3)@3

+
≤@1
≤@2
≤@3

L(1)@1
L(1)@2
L(1)@3

L(2)@1
L(2)@2
L(2)@3

L(3)@1
L(3)@2
L(3)@3

27



Computing Behaviors
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Is leader election computable with Id + All + Order?

R()@1
R()@2
R()@3

+
Id(1)@1
Id(2)@2
Id(3)@3

+
All(1)@1,All(2)@1,All(3)@1
All(1)@2,All(2)@2,All(3)@2
All(1)@3,All(2)@3,All(3)@3

+
≤@1
≤@2
≤@3

L(1)@1
L(1)@2
L(1)@3

L(2)@1
L(2)@2
L(2)@3

L(3)@1
L(3)@2
L(3)@3
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Computing Behaviors

Definition
C(χ) = the set of all behaviors computable in the model with constraint χ.

- C(Id + All) contains all (computable) queries;
- C(Id + All + Order) equals all (computable) behaviors;
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Coordination-Freedom for Behaviors

Definition
An algorithm is coordination-free if for some (ideal) partitioning of the input data,
the algorithm finds the correct output before doing any communication.
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Coordination-Freedom for Behaviors

Definition
An algorithm is coordination-free if for some (ideal) partitioning of the input data,
the algorithm finds the correct output before doing any communication.

This definition only makes sense for behaviors that are data-partitioning
independent∗∗
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Semantics Versus Syntactic Transducers

Coordination-Free computability = Computability in restricted variant of the model.

Theorem ([Ameloot, Neven, Van den Bussche, 2011])

- Cqueries(Id + All) ∩ Coordination-Free = Cqueries(Id)

Theorem ([Ameloot, K, Neven, Zinn, 2014])

- Cq(Id + All + Policy) ∩ Coordination-Free = Cq(Id + Policy)
- Cq(Id + All + AdomPolicy) ∩ Coordination-Free = Cq(Id + AdomPolicy)

Coordination Free = Ability to compute without access to All.
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Coordination / Computability

Definition
We call a behavior coordinating-free if it is in the set C(Id + Ord)

Definition
We call a behavior weakly coordinating if it is in a set C(Id + Something) with
property that there is no termination-aware algorithm to compute All.

C(Id + All + Order) = All behaviors
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Monotone Behaviors?

Theorem
C(Id + Ord + χ) = all χ-monotone behaviors.

Details in [Baccaert, K, 2023]
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Monotone Behaviors?

Example:
- Consider the query that takes a graph as input and asks if the graph as an
isolated edge.

- Consider χ = Id + Policy + Min + Max + Ord as configuration constraints

E(1, 2)

id(1)
{(1, 2), (2, 1), (1, 3), (3, 1),

(1, 4), (4, 1), (1, 5), (5, 1), . . .}
1 ≤ 2≤ 3 ≤ 4 ≤ 5

E(2, 3)E(3, 4)

id(2)
{(2, 3), (3, 2), (3, 4), (4, 3)

(3, 5), (5, 3), . . .}
1 ≤ 2 ≤ 3 ≤ 4 ≤ 5

E(4, 5)

id(3)
{(2, 4), (4, 2), (2, 5), (5, 2)

(4, 5), (5, 4), . . .}
1≤ 2 ≤ 3 ≤ 4 ≤ 5
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Monotone Behaviors?

Example:
- Consider the query that takes a graph as input and asks if the graph as an
isolated edge.

- Consider χ = Id + Policy + Min + Max + Ord as configuration constraints

E(1, 2)

id(1)
{(1, 2), (2, 1), (1, 3), (3, 1),

(1, 4), (4, 1), (1, 5), (5, 1), . . .}
1 ≤ 2≤ 3 ≤ 4 ≤ 5
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{(2, 3), (3, 2), (3, 4), (4, 3)

(3, 5), (5, 3), . . .}
1 ≤ 2 ≤ 3 ≤ 4 ≤ 5

E(4, 5)

id(3)
{(2, 4), (4, 2), (2, 5), (5, 2)

(4, 5), (5, 4), . . .}
1≤ 2 ≤ 3 ≤ 4 ≤ 5

Output: False
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Monotone Behaviors?
Example:

- Consider the query that takes a graph as input and asks if the graph as an
isolated edge.

- Consider χ = Id + Policy + Min + Max + Ord as configuration constraints

E(1, 2)

id(1)
{(1, 2), (2, 1), (1, 3), (3, 1),

(1, 4), (4, 1), (1, 5), (5, 1), . . .}
1 ≤ 2≤ 3 ≤ 4 ≤ 5

E(2, 3)E(3, 4)

id(2)
{(2, 3), (3, 2), (3, 4), (4, 3)

(3, 5), (5, 3), . . .}
1 ≤ 2 ≤ 3 ≤ 4 ≤ 5

E(4, 5)

id(3)
{(2, 4), (4, 2), (2, 5), (5, 2)

(4, 5), (5, 4), . . .}
1≤ 2 ≤ 3 ≤ 4 ≤ 5

Output: False
⇒ The isolated edge query is not χ-monotone⇒ not in C(χ)
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An Overview

=

=

Id

Id+Ord

Id+Ord+Ind⁺

Id+Ord⁺

Id+Ord⁺+Ind

Id+Ord⁺+Ind⁺

Id+L

Id+L+Ind

Id+L+Ind⁺

Id+Ind

Id+All

Id+L+All

Id+Ord⁺+All

Id+Ord+All

Id+Ind⁺Id+Ord+Ind

Coordination
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Roadmap

Context

From Monotone to Negation-Free Queries

Non-rewritable Monotone Queries

Coordination-Freedom and System Knowledge

Open Problems
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Open Questions

- Are there other techniques to eliminate negation in monotone Datalog
programs?

- Is there an elegant semantic definition of coordination-freedom for behaviors
that matches our definition based on the All relation?

- The definitions of behavior and constraint are all semantic, are there suitable
languages that can be used to define them in a more elegant way?

More information: bas.ketsman@vub.be
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