How to Stay CALM While Seeing What is not There?

Tom J Ameloot¹, <u>Bas Ketsman</u>¹, Frank Neven¹, Daniel Zinn²

¹ Hasselt University & Transnational University of Limburg
² LogicBlox, Inc

DBDBD 2014

Introduction

- ► Cloud-computing: Setting with asynchronous communication via messages which can be arbitrarily delayed but not lost
- ► CALM-conjecture: No coordination = Monotonicity

[Hellerstein, 2010]

(CALM = Consistency And Logical Monotonicity)

Monotonicity

Definition

A query Q is monotone if $Q(\mathbf{I}) \subseteq Q(\mathbf{I} \cup \mathbf{J})$ for all database instances \mathbf{I} and \mathbf{J} .

Notation

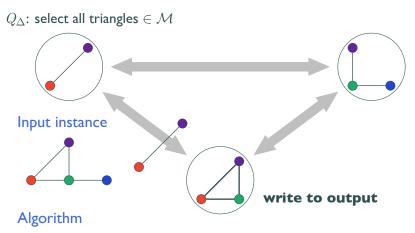
 \mathcal{M} : class of monotone queries

Example

 $lackbox{} Q_\Delta :$ Select triangles in a graph $\in \mathcal{M}$

 $lackbox{} Q_<:$ Select open triangles in a graph $ot\in\mathcal{M}$

CALM by Example

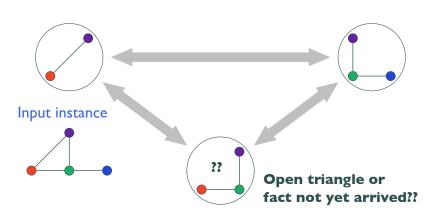


- ► broadcast all data
- periodically output local triangles

No coordination + Eventually consistent

CALM by Example

 $Q_{<}$: select all open triangles $\notin \mathcal{M}$



Requires global coordination

CALM-conjecture

CALM-conjecture

No-coordination = Monotonicity

[Hellerstein, 2010]

- ► [Ameloot, Neven, Van den Bussche, 2011]: TRUE
 - for a setting where nodes have no information about the distribution of facts
- ► [Zinn, Green, Ludäscher, 2012]: FALSE
 - for settings where nodes have information about the distribution of facts
- TRUE when also refining montonicity

Overview

I. CALM

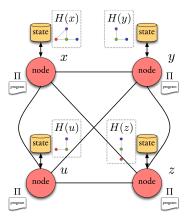
2. CALM Revision I

3. CALM Revision 2

Relational Transducer Networks

[Ameloot, Neven, Van den Bussche, 2011]

- ▶ Network $\mathcal{N} = \{x, y, u, z\}$
- ► Transducer Π
- messages can be arbitrarily delayed but never get lost



Semantics defined in terms of runs over a transition system

Relational Transducer Networks

[Ameloot, Neven, Van den Bussche, 2011]

Definition

A transducer Π computes a query Q if

- ▶ for all networks \mathcal{N} , ← Network independent
- ► for all databases I, Data distribution independent
- ► for all horizontal distributions *H*, and
- ▶ for every run of Π ,

$$out(\Pi) = Q(\mathbf{I}).$$

Consistency requirement

Coordination-free Algorithms

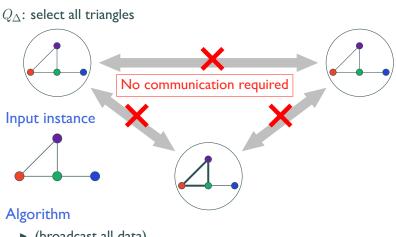
[Ameloot, Neven, Van den Bussche, 2011]

Definition

 Π is coordination-free if for all inputs ${\bf I}$ there is a distribution on which Π computes $Q({\bf I})$ without having to do communication.

Goal: separate data-communication from coordination-communication

Example: Ideal Distribution



- ► (broadcast all data)
- periodically output local triangles

CALM-conjecture

[Ameloot, Neven, Van den Bussche, 2011]

A query has a coordination-free and eventually consistent execution strategy

iff

the query is monotone

Theorem

$$\mathcal{F}_0 = \mathcal{M}$$

Definition

 $\mathcal{F}_0 = \mathsf{set}$ of queries which are distributedly computed by coordination-free transducers

Overview

I. CALM

2. CALM Revision I

3. CALM Revision 2

Policy-aware Transducers knows about missing fact Input instance "Distribution Policy"

Policy-aware Transducers

[Zinn, Green, Ludäscher, 2012]

Definition

A distribution policy ${\bf P}$ for σ and ${\cal N}$ is a total function from $facts(\sigma)$ to the power set of ${\cal N}$.

Definition

A policy-aware transducer is a transducer with access to P restricted to its active domain

Definition

 $\mathcal{F}_1=$ set of queries which are distributedly computed by policy-aware coordination-free transducers

Definition

A fact **f** is domain distinct from instance **I** when $adom(\mathbf{f}) \not\subseteq adom(\mathbf{I})$.

Example

Definition

An instance J is domain distinct from instance I when every fact $\textbf{f} \in J$ is domain distinct from I.

Example

Definition

A query Q is domain-distinct-monotone if $Q(\mathbf{I}) \subseteq Q(\mathbf{I} \cup \mathbf{J})$ for all \mathbf{I} and \mathbf{J} for which \mathbf{J} is domain distinct from \mathbf{I} .

Notation

 $\mathcal{M}_{distinct}$: class of domain-distinct-monotone queries

Remark

 $\mathcal{M}_{distinct}$: class of queries preserved under extensions

Example

Select open triangles in graph $\in \mathcal{M}_{distinct}$.

Not domain-distinct from I

Revised CALM-conjecture

A query has a coordination-free and eventually consistent execution strategy under distribution policies iff the query is domain-distinct-monotone

Theorem
$$\mathcal{F}_1 = \mathcal{M}_{distinct}$$

Definition

 $\mathcal{F}_1=$ set of queries which are distributedly computed by policy-aware coordination-free transducers

Proof of $\mathcal{M}_{distinct} \subseteq \mathcal{F}_1$

- ▶ Monotonicity: $Q(\mathbf{J}) \subseteq Q(\mathbf{I})$ for every $\mathbf{J} \subseteq \mathbf{I}$
- ► Domain-distinct-monotonicity:

Let I be an instance, $C \subseteq adom(I)$.

Induced instance: $I_{|C} = \{ f \in I \mid adom(f) \subseteq C \}$

By domain-distinct-monotonicity: $\mathit{Q}(\mathbf{I}_{|\mathit{C}}) \subseteq \mathit{Q}(\mathbf{I})$

Proof of $\mathcal{M}_{distinct} \subseteq \mathcal{F}_1$

\triangleright \mathcal{F}_1 setting:

Let I be an instance, $C \subseteq adom(I)$.

C is complete at node x when x knows for every fact \mathbf{f} with $adom(\mathbf{f}) \subseteq C$ whether $\mathbf{f} \in \mathbf{I}$ or $\mathbf{f} \notin \mathbf{I}$.

```
complete set = instance based on complete C = induced instance of I based on C
```

Algorithm

- broadcast all present and deduced absent facts
- Evaluate query on complete sets

Overview

I. CALM

2. CALM Revision I

3. CALM Revision 2

Domain-guided Policies Input instance "Distribution Policy"

Domain-guided Policies

[Zinn, Green, Ludäscher, 2012]

Definition

 $\mathcal{F}_2 =$ queries which are distributedly computed under domain-guided distribution policies by policy-aware coordination-free transducers.

Definition

An instance J is domain disjoint from instance I when $adom(I) \cap adom(J) = \emptyset$.

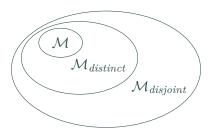
Example

Definition

A query Q is domain-disjoint-monotone if $Q(\mathbf{I}) \subseteq Q(\mathbf{I} \cup \mathbf{J})$ for all \mathbf{I} and \mathbf{J} for which \mathbf{J} is domain disjoint from \mathbf{I} .

Notation

 $\mathcal{M}_{\textit{disjoint}}$: class of domain-disjoint-monotone queries



Revised CALM-conjecture

A query has a coordination-free and eventually consistent execution strategy under domain-guided distribution policies iff the query is domain-disjoint-monotone

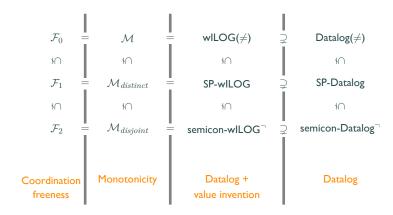
Theorem

$$\mathcal{F}_2 = \mathcal{M}_{\textit{disjoint}}$$

Definition

 $\mathcal{F}_2 =$ queries which are distributedly computed under domain-guided distribution policies by policy-aware coordination-free transducers.

Summary



References

Tom J Ameloot, B. K., Frank Neven and Daniel Zinn. Weaker Forms of Monotonicity for Declarative Networking: a more fine-grained answer to the CALM-conjecture. In **PODS** 2014.