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Topic of the Talk

How to compute multi-joins (over graphs) ...

(x,y,2) < R(x,y),S(y,2), T(z,x)

... in @ multi-round shared nothing cluster setting ...
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... with communication cost that is worst-case optimal?
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Introduction

Worst-case optimality:

» Output size: AGM bound [Atserias, Grohe & Marx 08]

query output = mP”.

Lower-bound on worst-case running-time ‘

» Optimal sequential algorithms: (w.r.t running-time)

Leapfrog-trie-join, NPRR, Generic Join



Introduction (2)

Worst-case optimal communication cost:

» Load = maximal amount of messages received by any server in
any communication round

» Lowerbound
load > pl/%. [Koutris, Beame & Suciu 16]

» Optimal parallel algorithms: (w.r.t communication cost)
[Koutris, Beame & Suciu 16]

Ad-hoc algorithms for chains, stars, simple cycles



Main Result

A parallel algorithm exists for computing join queries over
graphs using only a constant number of rounds and

load < O(m/p'/P").

Query/schema restrictions:
» Arity at most two
» No projections
» No self-joins
Essentially optimal:
» Up to a poly-log factor

» Data-complexity



The Model



Massively Parallel Communication Model:
Input Input Input
fragment fragment fragment
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Lowerbound and Hypercube (p* and 7%)



Lower-Bound
Input
fragment
~L For a constant-round algorithm to be correct

for given query on every instance

worst-case load is

>m

— pl/,O>I<

(assuming equi-sized relations)

Output Through AGM bound
fragment



p* = Fractional Edge Covering Number

Ri(x,y),R2(y,2z),R3(2,%),Ry(z,u),R5(u,w), Tg(u, t), T7(t,s), Ts(s, u)

Query Graph
1/2
/ 1/2
0 1
[
12 - p*=17/2
0
0
1

» Objective function: Assign a positive weight to every edge
» Constraint: Every vertex incident to sum of weights > 1
» Optimization goal: Minimize total sum of assigned weights
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Hypercube (= shares algorithm)

Input
fragment = Single-round hash-join algorithm

Introduced by [Afrati, Ullman, 2010]

If , runs with load:
< —
— p 1/7

(w.h.p. and ignoring poly-log factor)

Output [Beame, Koutris, Suciu 2013]
fragment

=
1
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T* = Fractional Edge Packing Number

1/2 1/2

1/2

1

» Objective function: Assign a positive weight to every edge
» Constraint: Every vertex incident to sum of weights

» Optimization goal: total sum of assigned weights
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Relation between 7* and p*?

Solution is tight if satisfies = rather than < or >.
For general hypergraphs: No clear relation between 7* and p*!

For simple graphs:

» Optimal half-integral fractional edge packings exist (using only
weights 1, 1/2 and 0)

> < |Var52( ) < p* (assign weights 1/2 to all vertices)
. T4 ot = vars(Q)



Main Result by Example
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Heavy-Hitter Configurations

Example Query:
(x,y,z) <~ RI(X; y)7 R2<y,2), R3(27 U)

O 0 0 O
O O O
O O O

Heavy-hitter: value with degree > ¢ (in some direction)

Skew: some heavy-hitter exists



Break Skewed Instance in Understandable Pieces

Heavy-hitter configuration (0, H): A skew threshold value ¢ + labeling
of query variables with “heavy” (H) or “light” (others).

Matching instance /5 ;;) = induced subinstance where heavy
variables have only the heavy values, light variables only the light
values.



Break Skewed Instance in Understandable Pieces

Evaluation strategy:

Compute Q in parallel over all instances /5 ;) using the same p
servers.

For Fixed é:

Claim: UHgvars(Q) Q(/|(57H)) = Q(I)

As the number of configurations depends on Q,
maximal load < maxy{maximal load to compute Q on /(5 ) }.

(ignoring constants)
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The Algorithm in a Nutshell

Preprocessing:

» Identify where skew is
Heavy-hitters and degrees of heavy-hitters.

Algorithm:

1. Break skewed instance in understandable pieces
2. Divide and Conquer strategy to deal with skew

3. Solve remaining (skew-free) problem with Hypercube
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The Algorithm by Example

Example query Servers
0 1 777

1/2/ \1/2

1/2

» 7 = p* = |vars(Q)|/2
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The Algorithm by Example

Threshold value: § = m

Do computation for each heavy-hitter configuration in parallel

AN AT AT

“all light” “all heavy” “hybrid”



The Algorithm by Example: “All light”

777

Use the Hypercube algorithm
» Due to tightness: 7% = p* = |vars(Q)|/2

. f— m = m
» non skewed means: degree < § = pl/Tars(Q)] — p1/(27)
m _ m
» Hypercube ensures load < oI = ol



The Algorithm by Example: “All heavy”

777

Broadcast all relations

v

. . _ m
Avalue is heavy if degree > § = PYUTEOIR

An heavy attribute has < p'/IVars(Q)l heavy values.
A heavy relation has < p?/Ivas(Q)l heavy tuples.
Every server receives at most p2/Vars(Q)l tuples.

2 _ 2
p /Ivars(Q)| < p2/|‘g:s(g)‘ = plr/np* duetom > p-.

vV v vy

(ignoring the constants)



The Algorithm by Example: “Hybrid”
Step 1: Broadcast heavy relation

» As before: load < ﬁ due tom > p2.

Refocus:

Ay

» Solution can be easily extended.
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Step 2: Assign group of servers to every heavy value

L7

» Combination of outputs = complete output
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» size of group p/ = p(|vars(Q)|71)/|vars(Q)\
(because < p'/IVars(Q)l heavy values)

Step 3: Semi-join reduce involved relations

» reductions are cheap: 2 rounds and load < ’% < pl’}’p*
(because we have > 2 light variables)
Refocus:

» Output for simpler query can be translated to output for original

guery by simply adding to every tuple the locally known heavy
value
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Step 4: Hypercube

m _ m < m _ m
- — 7 - * /
pI/Mars(Q)] = p/(was(@-1) = pi/fers(@)] i/ (27)

m m
@) S P

» degrees <

» Hypercube guarantees load <

Sometimes more complex: algorithm uses up to 9 rounds
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Summary & Future Work
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Main Result

Every conjunctive query without self-joins, that is full, over
relations with arities at most two can be computed in 9 rounds

p* seems the right way to express optimality for the communication
cost of distributed query evaluation algorithms, at least when
relation arities do not exceed two.



Does an algorithm exist with worst-case optimal load m/pl/f)* for
queries over relations with arbitrary-arities?

» relation between edge cover / packing unclear in general
» half-integral edge cover/packing does not always exist
» queries exist where 7% > p*
R1(x1,y1,21),R2(x2,¥2,22), S1(x1,X2), S2(y1, ¥2), S3(21, 22)-

= Hypercube cannot be used even when there is no skew

Is m/pl/p* a tight lowerbound for joins over arbitrary-arity
relations?



Future Work (2)

Are the 9 rounds essential?
What if queries have existential quantification (projections)?

What if the database has dependencies?



Thank you!
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