A Worst-Case Optimal Multi-Round Algorithm for Parallel Computation of Conjunctive Queries

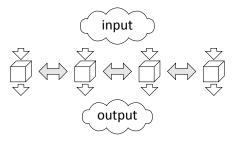
Bas Ketsman & Dan Suciu

Topic of the Talk

How to compute multi-joins (over graphs) ...

$$(x, y, z) \leftarrow R(x, y), S(y, z), T(z, x)$$

... in a multi-round shared nothing cluster setting ...



... with communication cost that is worst-case optimal?

Worst-case optimality:

• **Output size:** AGM bound [Atserias, Grohe & Marx 08] query output = m^{ρ^*} .

Lower-bound on worst-case running-time

Optimal sequential algorithms: (w.r.t running-time)

Leapfrog-trie-join, NPRR, Generic Join

Introduction (2)

Worst-case optimal communication cost:

- Load = maximal amount of messages received by any server in any communication round
- Lowerbound

load $\geq \frac{m}{p^{1/\rho^*}}$. [Koutris, Beame & Suciu 16]

 Optimal parallel algorithms: (w.r.t communication cost) [Koutris, Beame & Suciu 16]

Ad-hoc algorithms for chains, stars, simple cycles

Main Result

A parallel algorithm exists for computing join queries over graphs using only a constant number of rounds and

 $\mathsf{load} \leq \tilde{\mathcal{O}}(\textit{m}/\textit{p}^{1/\rho^*}).$

Query/schema restrictions:

- Arity at most two
- No projections
- No self-joins

Essentially optimal:

- Up to a poly-log factor
- Data-complexity

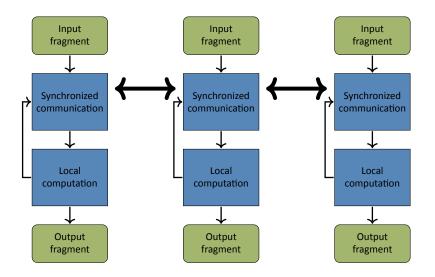
The Model

Lowerbound and Hypercube (ho^* and au^*)

Main Result by Example

Summary & Future Work

Massively Parallel Communication Model: [Koutris, Suciu 2011]



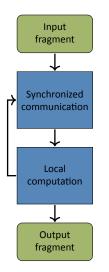
The Model

Lowerbound and Hypercube (ho^* and au^*)

Main Result by Example

Summary & Future Work

Lower-Bound [Koutris, Beame, Suciu 2016]



For a constant-round algorithm to be correct for given query on every instance

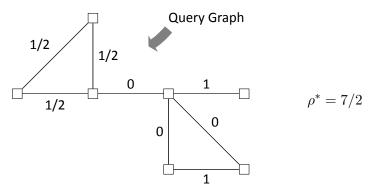
worst-case load is $\geq rac{m}{p^{1/
ho^*}}$

(assuming equi-sized relations)

Through AGM bound

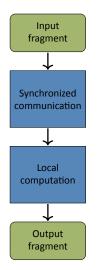
ρ^* = Fractional Edge Covering Number

 $R_1(x, y), R_2(y, z), R_3(z, x), R_4(z, u), R_5(u, w), T_6(u, t), T_7(t, s), T_8(s, u)$



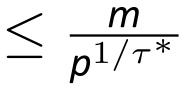
- Objective function: Assign a positive weight to every edge
- ► Constraint: Every vertex incident to sum of weights ≥ 1
- Optimization goal: Minimize total sum of assigned weights

Hypercube (= shares algorithm)



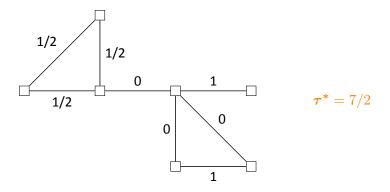
= Single-round hash-join algorithm Introduced by [Afrati, Ullman, 2010]

If database has no skew, runs with load:



(w.h.p. and ignoring poly-log factor) [Beame, Koutris, Suciu 2013]

au^* = Fractional Edge Packing Number



- Objective function: Assign a positive weight to every edge
- ► Constraint: Every vertex incident to sum of weights ≤ 1
- Optimization goal: Maximize total sum of assigned weights

Solution is tight if satisfies = rather than \leq or \geq .

For general hypergraphs: No clear relation between τ^* and ρ^* !

For simple graphs:

- Optimal half-integral fractional edge packings exist (using only weights 1, 1/2 and 0)
- ► $\tau^* \leq \frac{|vars(Q)|}{2} \leq \rho^*$ (assign weights 1/2 to all vertices)

$$\blacktriangleright \ \tau^* + \rho^* = |\mathsf{vars}(\mathcal{Q})|$$

The Model

Lowerbound and Hypercube (ho^* and au^*)

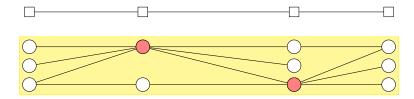
Main Result by Example

Summary & Future Work

Heavy-Hitter Configurations

Example Query:

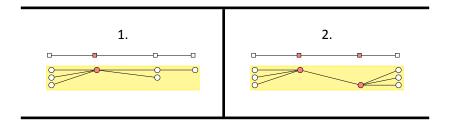
$$(\mathbf{x}, \mathbf{y}, \mathbf{z}) \leftarrow \mathbf{R}_1(\mathbf{x}, \mathbf{y}), \mathbf{R}_2(\mathbf{y}, \mathbf{z}), \mathbf{R}_3(\mathbf{z}, \mathbf{u})$$



Heavy-hitter: value with degree $> \delta$ (in some direction)

Skew: some heavy-hitter exists

Heavy-hitter configuration (δ, H) : A skew threshold value δ + labeling of query variables with "heavy" (H) or "light" (others).



Matching instance $I_{(\delta,H)}$ = induced subinstance where heavy variables have only the heavy values, light variables only the light values.

Evaluation strategy:

Compute Q in parallel over all instances $I_{(\delta, H)}$ using the same p servers.

For Fixed δ :

Claim:
$$\bigcup_{H \subseteq vars(Q)} Q(I|_{(\delta,H)}) = Q(I).$$

As the number of configurations depends on Q, maximal load $\leq \max_{H} \{ \max \text{ maximal load to compute } Q \text{ on } I_{(\delta,H)} \}.$

(ignoring constants)

Preprocessing:

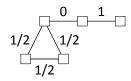
 Identify where skew is Heavy-hitters and degrees of heavy-hitters.

Algorithm:

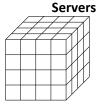
- 1. Break skewed instance in understandable pieces
- 2. Divide and Conquer strategy to deal with skew
- 3. Solve remaining (skew-free) problem with Hypercube

The Algorithm by Example

Example query

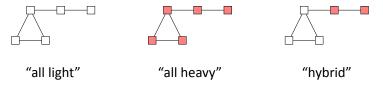


$$\bullet \ \tau^* = \rho^* = |\mathsf{vars}(\mathcal{Q})|/2$$

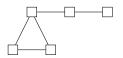


Threshold value:
$$\delta = \frac{m}{p^{1/|\text{vars}(\mathcal{Q})|}}$$

Do computation for each heavy-hitter configuration in parallel



The Algorithm by Example: "All light"



Use the Hypercube algorithm

- Due to tightness: $\tau^* = \rho^* = |\text{vars}(\mathcal{Q})|/2$
- ► non skewed means: degree $\leq \delta = \frac{m}{p^{1/|vars(Q)|}} = \frac{m}{p^{1/(2\tau^*)}}$
- Hypercube ensures load $\leq \frac{m}{p^{1/\tau^*}} = \frac{m}{p^{1/\rho^*}}$.

The Algorithm by Example: "All heavy"

Broadcast all relations

- A value is heavy if degree $> \delta = \frac{m}{p^{1/|vars(Q)|}}$.
- An heavy attribute has $\leq p^{1/|vars(Q)|}$ heavy values.
- ► A heavy relation has $\leq p^{2/|vars(Q)|}$ heavy tuples.
- ► Every server receives at most $p^{2/|vars(Q)|}$ tuples.

►
$$p^{2/|\operatorname{vars}(\mathcal{Q})|} \leq \frac{m}{p^{2/|\operatorname{vars}(\mathcal{Q})|}} = \frac{m}{p^{1/p^*}}$$
 due to $m \geq p^2$.

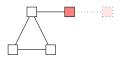
(ignoring the constants)

The Algorithm by Example: "Hybrid"

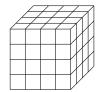
Step 1: Broadcast heavy relation

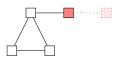
• As before: load $\leq \frac{m}{p^{1/\rho^*}}$ due to $m \geq p^2$.

Refocus:

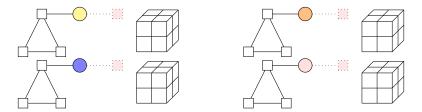


► Solution can be easily extended.

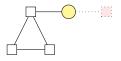




Step 2: Assign group of servers to every heavy value



Combination of outputs = complete output

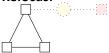


 size of group p' = p^{(|vars(Q)|-1)/|vars(Q)|} (because ≤ p^{1/|vars(Q)|} heavy values)

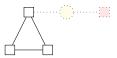
Step 3: Semi-join reduce involved relations

 reductions are cheap: 2 rounds and load ≤ m/p' ≤ m/p^{1/ρ*} (because we have > 2 light variables)

Refocus:



 Output for simpler query can be translated to output for original query by simply adding to every tuple the locally known heavy value



Step 4: Hypercube

- ► degrees $\leq \frac{m}{p^{1/|\text{vars}(\mathcal{Q})|}} = \frac{m}{p'^{1/(|\text{vars}(\mathcal{Q})|-1)}} \leq \frac{m}{p'^{1/|\text{vars}(\mathcal{Q}')|}} = \frac{m}{p'^{1/(2\tau^*(\mathcal{Q}'))}}$
- ► Hypercube guarantees load $\leq \frac{m}{p^{1/\rho^*(Q')}} \leq \frac{m}{p^{1/\rho^*(Q)}}$

done

Sometimes more complex: algorithm uses up to 9 rounds

The Model

Lowerbound and Hypercube (ho^* and au^*)

Main Result by Example

Summary & Future Work

Every conjunctive query without self-joins, that is full, over relations with arities at most two can be computed in 9 rounds with load $\leq \tilde{\mathcal{O}}(\frac{m}{\rho^{1/\rho^*}})$.

Essentialy optimal

 ρ^* seems the right way to express optimality for the communication cost of distributed query evaluation algorithms, at least when relation arities do not exceed two.

Does an algorithm exist with worst-case optimal load $m/p^{1/p^*}$ for queries over relations with arbitrary-arities?

- ► relation between edge cover / packing unclear in general
- half-integral edge cover/packing does not always exist
- queries exist where $\tau^* > \rho^*$

 $R_1(x_1, y_1, z_1), R_2(x_2, y_2, z_2), S_1(x_1, x_2), S_2(y_1, y_2), S_3(z_1, z_2).$

 \Rightarrow Hypercube cannot be used even when there is no skew

Is $m/p^{1/\rho^*}$ a tight lower bound for joins over arbitrary-arity relations?

Are the 9 rounds essential?

What if queries have existential quantification (projections)?

What if the database has dependencies?

Thank you!