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Topic of the Talk

How to computemulƟ-joins (over graphs) ...

(x, y, z)← R(x, y), S(y, z), T(z, x)

... in a mulƟ-round shared nothing cluster seƫng ...

input

output

... with communicaƟon cost that is worst-case opƟmal?
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IntroducƟon

Worst-case opƟmality:

▶ Output size: AGM bound [Atserias, Grohe & Marx 08]
query output= mρ∗

.

Lower-bound on worst-case running-Ɵme

▶ OpƟmal sequenƟal algorithms: (w.r.t running-Ɵme)
Leapfrog-trie-join, NPRR, Generic Join
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IntroducƟon (2)

Worst-case opƟmal communicaƟon cost:

▶ Load = maximal amount of messages received by any server in
any communicaƟon round

▶ Lowerbound
load≥ m

p1/ρ∗ . [Koutris, Beame & Suciu 16]

▶ OpƟmal parallel algorithms: (w.r.t communicaƟon cost)
[Koutris, Beame & Suciu 16]

Ad-hoc algorithms for chains, stars, simple cycles
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Main Result

A parallel algorithm exists for compuƟng join queries over
graphs using only a constant number of rounds and

load≤ Õ(m/p1/ρ∗).

Query/schema restricƟons:
▶ Arity at most two
▶ No projecƟons
▶ No self-joins

EssenƟally opƟmal:
▶ Up to a poly-log factor
▶ Data-complexity
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Outline

The Model

Lowerbound and Hypercube (ρ∗ and τ∗)

Main Result by Example

Summary & Future Work
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Massively Parallel CommunicaƟon Model: [Koutris, Suciu 2011]
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Lower-Bound [Koutris, Beame, Suciu 2016]

Input
fragment

Synchronized
communicaƟon

Local
computaƟon

Output
fragment

For a constant-round algorithm to be correct
for given query on every instance

worst-case load is

≥ m
p1/ρ∗

(assuming equi-sized relaƟons)

Through AGM bound
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ρ∗ = FracƟonal Edge Covering Number

R1(x, y), R2(y, z), R3(z, x), R4(z, u), R5(u,w), T6(u, t), T7(t, s), T8(s, u)

1

1/2

1/2
1/2

0

0

1

0

1

Query Graph

ρ∗ = 7/2

▶ ObjecƟve funcƟon: Assign a posiƟve weight to every edge
▶ Constraint: Every vertex incident to sum of weights≥ 1

▶ OpƟmizaƟon goal: Minimize total sum of assigned weights
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Hypercube (= shares algorithm)

Input
fragment

Synchronized
communicaƟon

Local
computaƟon

Output
fragment

= Single-round hash-join algorithm
Introduced by [AfraƟ, Ullman, 2010]

If database has no skew, runs with load:

≤ m
p1/τ∗

(w.h.p. and ignoring poly-log factor)
[Beame, Koutris, Suciu 2013]
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τ ∗ = FracƟonal Edge Packing Number

1/2

1/2
1/2

0

0
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0

1
τ ∗ = 7/2

▶ ObjecƟve funcƟon: Assign a posiƟve weight to every edge
▶ Constraint: Every vertex incident to sum of weights≤ 1

▶ OpƟmizaƟon goal: Maximize total sum of assigned weights
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RelaƟon between τ ∗ and ρ∗?

SoluƟon is Ɵght if saƟsfies= rather than≤ or≥.

For general hypergraphs: No clear relaƟon between τ∗ and ρ∗!

For simple graphs:
▶ OpƟmal half-integral fracƟonal edge packings exist (using only

weights 1, 1/2 and 0)
▶ τ∗ ≤ |vars(Q)|

2 ≤ ρ∗ (assign weights 1/2 to all verƟces)
▶ τ∗ + ρ∗ = |vars(Q)|
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Heavy-HiƩer ConfiguraƟons

Example Query:
(x, y, z)← R1(x, y), R2(y, z), R3(z, u)

Heavy-hiƩer: value with degree> δ (in some direcƟon)

Skew: some heavy-hiƩer exists
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Break Skewed Instance in Understandable Pieces

Heavy-hiƩer configuraƟon (δ,H): A skew threshold value δ + labeling
of query variables with “heavy” (H) or “light” (others).

1. 2.

Matching instance I(δ,H) = induced subinstance where heavy
variables have only the heavy values, light variables only the light
values.
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Break Skewed Instance in Understandable Pieces

EvaluaƟon strategy:
Compute Q in parallel over all instances I(δ,H) using the same p
servers.

For Fixed δ:

Claim:
∪

H⊆vars(Q) Q(I|(δ,H)) = Q(I).

As the number of configuraƟons depends on Q,
maximal load≤maxH{maximal load to compute Q on I(δ,H)}.

(ignoring constants)
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The Algorithm in a Nutshell

Preprocessing:
▶ IdenƟfy where skew is

Heavy-hiƩers and degrees of heavy-hiƩers.
Algorithm:

1. Break skewed instance in understandable pieces
2. Divide and Conquer strategy to deal with skew
3. Solve remaining (skew-free) problem with Hypercube
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The Algorithm by Example

Example query Servers
0 1

1/2

1/2

1/2

▶ τ∗ = ρ∗ = |vars(Q)|/2
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The Algorithm by Example

Threshold value: δ = m
p1/|vars(Q)|

Do computaƟon for each heavy-hiƩer configuraƟon in parallel

“all light” “all heavy” “hybrid”
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The Algorithm by Example: “All light”

Use the Hypercube algorithm

▶ Due to Ɵghtness: τ∗ = ρ∗ = |vars(Q)|/2
▶ non skewed means: degree≤ δ = m

p1/|vars(Q)| =
m

p1/(2τ∗)

▶ Hypercube ensures load≤ m
p1/τ∗ = m

p1/ρ∗ .
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The Algorithm by Example: “All heavy”

Broadcast all relaƟons
▶ A value is heavy if degree> δ = m

p1/|vars(Q)| .

▶ An heavy aƩribute has≤ p1/|vars(Q)| heavy values.
▶ A heavy relaƟon has≤ p2/|vars(Q)| heavy tuples.
▶ Every server receives at most p2/|vars(Q)| tuples.
▶ p2/|vars(Q)| ≤ m

p2/|vars(Q)| =
m

p1/ρ∗ due tom ≥ p2.

(ignoring the constants)
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The Algorithm by Example: “Hybrid”

Step 1: Broadcast heavy relaƟon
▶ As before: load≤ m

p1/ρ∗ due tom ≥ p2.
Refocus:

▶ SoluƟon can be easily extended.
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Step 2: Assign group of servers to every heavy value

▶ CombinaƟon of outputs = complete output
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▶ size of group p′ = p(|vars(Q)|−1)/|vars(Q)|

(because≤ p1/|vars(Q)| heavy values)

Step 3: Semi-join reduce involved relaƟons
▶ reducƟons are cheap: 2 rounds and load≤ m

p′ ≤
m

p1/ρ∗

(because we have> 2 light variables)
Refocus:

▶ Output for simpler query can be translated to output for original
query by simply adding to every tuple the locally known heavy
value
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Step 4: Hypercube

▶ degrees≤ m
p1/|vars(Q)| =

m
p′1/(|vars(Q)|−1) ≤ m

p′1/|vars(Q′)| =
m

p′1/(2τ∗(Q′))

▶ Hypercube guarantees load≤ m
p′1/τ∗(Q′) ≤ m

p1/ρ∗(Q)

done

SomeƟmes more complex: algorithm uses up to 9 rounds
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Main Result

Every conjuncƟve query without self-joins, that is full, over
relaƟons with ariƟes at most two can be computed in 9 rounds
with load≤ Õ( m

p1/ρ∗ ).

EssenƟaly opƟmal

ρ∗ seems the right way to express opƟmality for the communicaƟon
cost of distributed query evaluaƟon algorithms, at least when
relaƟon ariƟes do not exceed two.
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Future Work

Does an algorithm exist with worst-case opƟmal loadm/p1/ρ∗ for
queries over relaƟons with arbitrary-ariƟes?

▶ relaƟon between edge cover / packing unclear in general
▶ half-integral edge cover/packing does not always exist
▶ queries exist where τ∗ > ρ∗

R1(x1, y1, z1), R2(x2, y2, z2), S1(x1, x2), S2(y1, y2), S3(z1, z2).

⇒ Hypercube cannot be used even when there is no skew

Ism/p1/ρ∗ a Ɵght lowerbound for joins over arbitrary-arity
relaƟons?
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Future Work (2)

Are the 9 rounds essenƟal?

What if queries have existenƟal quanƟficaƟon (projecƟons)?

What if the database has dependencies?
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Thank you!
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