
AWorst-Case OpƟmal MulƟ-Round Algorithm for Parallel
ComputaƟon of ConjuncƟve Queries

Bas Ketsman & Dan Suciu

1

Topic of the Talk

How to computemulƟ-joins (over graphs) ...

(x, y, z)← R(x, y), S(y, z), T(z, x)

... in a mulƟ-round shared nothing cluster seƫng ...

input

output

... with communicaƟon cost that is worst-case opƟmal?

2

IntroducƟon

Worst-case opƟmality:

▶ Output size: AGM bound [Atserias, Grohe & Marx 08]
query output= mρ∗

.

Lower-bound on worst-case running-Ɵme

▶ OpƟmal sequenƟal algorithms: (w.r.t running-Ɵme)
Leapfrog-trie-join, NPRR, Generic Join

3

IntroducƟon (2)

Worst-case opƟmal communicaƟon cost:

▶ Load = maximal amount of messages received by any server in
any communicaƟon round

▶ Lowerbound
load≥ m

p1/ρ∗ . [Koutris, Beame & Suciu 16]

▶ OpƟmal parallel algorithms: (w.r.t communicaƟon cost)
[Koutris, Beame & Suciu 16]

Ad-hoc algorithms for chains, stars, simple cycles

4

Main Result

A parallel algorithm exists for compuƟng join queries over
graphs using only a constant number of rounds and

load≤ Õ(m/p1/ρ∗).

Query/schema restricƟons:
▶ Arity at most two
▶ No projecƟons
▶ No self-joins

EssenƟally opƟmal:
▶ Up to a poly-log factor
▶ Data-complexity

5

Outline

The Model

Lowerbound and Hypercube (ρ∗ and τ∗)

Main Result by Example

Summary & Future Work

6

Massively Parallel CommunicaƟon Model: [Koutris, Suciu 2011]

Input
fragment

Synchronized
communicaƟon

Local
computaƟon

Output
fragment

Input
fragment

Synchronized
communicaƟon

Local
computaƟon

Output
fragment

Input
fragment

Synchronized
communicaƟon

Local
computaƟon

Output
fragment

7

Outline

The Model

Lowerbound and Hypercube (ρ∗ and τ∗)

Main Result by Example

Summary & Future Work

8

Lower-Bound [Koutris, Beame, Suciu 2016]

Input
fragment

Synchronized
communicaƟon

Local
computaƟon

Output
fragment

For a constant-round algorithm to be correct
for given query on every instance

worst-case load is

≥ m
p1/ρ∗

(assuming equi-sized relaƟons)

Through AGM bound

9

ρ∗ = FracƟonal Edge Covering Number

R1(x, y), R2(y, z), R3(z, x), R4(z, u), R5(u,w), T6(u, t), T7(t, s), T8(s, u)

1

1/2

1/2
1/2

0

0

1

0

1

Query Graph

ρ∗ = 7/2

▶ ObjecƟve funcƟon: Assign a posiƟve weight to every edge
▶ Constraint: Every vertex incident to sum of weights≥ 1

▶ OpƟmizaƟon goal: Minimize total sum of assigned weights
10

Hypercube (= shares algorithm)

Input
fragment

Synchronized
communicaƟon

Local
computaƟon

Output
fragment

= Single-round hash-join algorithm
Introduced by [AfraƟ, Ullman, 2010]

If database has no skew, runs with load:

≤ m
p1/τ∗

(w.h.p. and ignoring poly-log factor)
[Beame, Koutris, Suciu 2013]

11

τ ∗ = FracƟonal Edge Packing Number

1/2

1/2
1/2

0

0

1

0

1
τ ∗ = 7/2

▶ ObjecƟve funcƟon: Assign a posiƟve weight to every edge
▶ Constraint: Every vertex incident to sum of weights≤ 1

▶ OpƟmizaƟon goal: Maximize total sum of assigned weights

12

RelaƟon between τ ∗ and ρ∗?

SoluƟon is Ɵght if saƟsfies= rather than≤ or≥.

For general hypergraphs: No clear relaƟon between τ∗ and ρ∗!

For simple graphs:
▶ OpƟmal half-integral fracƟonal edge packings exist (using only

weights 1, 1/2 and 0)
▶ τ∗ ≤ |vars(Q)|

2 ≤ ρ∗ (assign weights 1/2 to all verƟces)
▶ τ∗ + ρ∗ = |vars(Q)|

13

Outline

The Model

Lowerbound and Hypercube (ρ∗ and τ∗)

Main Result by Example

Summary & Future Work

14

Heavy-HiƩer ConfiguraƟons

Example Query:
(x, y, z)← R1(x, y), R2(y, z), R3(z, u)

Heavy-hiƩer: value with degree> δ (in some direcƟon)

Skew: some heavy-hiƩer exists

15

Break Skewed Instance in Understandable Pieces

Heavy-hiƩer configuraƟon (δ,H): A skew threshold value δ + labeling
of query variables with “heavy” (H) or “light” (others).

1. 2.

Matching instance I(δ,H) = induced subinstance where heavy
variables have only the heavy values, light variables only the light
values.

16

Break Skewed Instance in Understandable Pieces

EvaluaƟon strategy:
Compute Q in parallel over all instances I(δ,H) using the same p
servers.

For Fixed δ:

Claim:
∪

H⊆vars(Q) Q(I|(δ,H)) = Q(I).

As the number of configuraƟons depends on Q,
maximal load≤maxH{maximal load to compute Q on I(δ,H)}.

(ignoring constants)

17

The Algorithm in a Nutshell

Preprocessing:
▶ IdenƟfy where skew is

Heavy-hiƩers and degrees of heavy-hiƩers.
Algorithm:

1. Break skewed instance in understandable pieces
2. Divide and Conquer strategy to deal with skew
3. Solve remaining (skew-free) problem with Hypercube

18

The Algorithm by Example

Example query Servers
0 1

1/2

1/2

1/2

▶ τ∗ = ρ∗ = |vars(Q)|/2

19

The Algorithm by Example

Threshold value: δ = m
p1/|vars(Q)|

Do computaƟon for each heavy-hiƩer configuraƟon in parallel

“all light” “all heavy” “hybrid”

20

The Algorithm by Example: “All light”

Use the Hypercube algorithm

▶ Due to Ɵghtness: τ∗ = ρ∗ = |vars(Q)|/2
▶ non skewed means: degree≤ δ = m

p1/|vars(Q)| =
m

p1/(2τ∗)

▶ Hypercube ensures load≤ m
p1/τ∗ = m

p1/ρ∗ .

21

The Algorithm by Example: “All heavy”

Broadcast all relaƟons
▶ A value is heavy if degree> δ = m

p1/|vars(Q)| .

▶ An heavy aƩribute has≤ p1/|vars(Q)| heavy values.
▶ A heavy relaƟon has≤ p2/|vars(Q)| heavy tuples.
▶ Every server receives at most p2/|vars(Q)| tuples.
▶ p2/|vars(Q)| ≤ m

p2/|vars(Q)| =
m

p1/ρ∗ due tom ≥ p2.

(ignoring the constants)

22

The Algorithm by Example: “Hybrid”

Step 1: Broadcast heavy relaƟon
▶ As before: load≤ m

p1/ρ∗ due tom ≥ p2.
Refocus:

▶ SoluƟon can be easily extended.
23

Step 2: Assign group of servers to every heavy value

▶ CombinaƟon of outputs = complete output

24

▶ size of group p′ = p(|vars(Q)|−1)/|vars(Q)|

(because≤ p1/|vars(Q)| heavy values)

Step 3: Semi-join reduce involved relaƟons
▶ reducƟons are cheap: 2 rounds and load≤ m

p′ ≤
m

p1/ρ∗

(because we have> 2 light variables)
Refocus:

▶ Output for simpler query can be translated to output for original
query by simply adding to every tuple the locally known heavy
value

25

Step 4: Hypercube

▶ degrees≤ m
p1/|vars(Q)| =

m
p′1/(|vars(Q)|−1) ≤ m

p′1/|vars(Q′)| =
m

p′1/(2τ∗(Q′))

▶ Hypercube guarantees load≤ m
p′1/τ∗(Q′) ≤ m

p1/ρ∗(Q)

done

SomeƟmes more complex: algorithm uses up to 9 rounds

26

Outline

The Model

Lowerbound and Hypercube (ρ∗ and τ∗)

Main Result by Example

Summary & Future Work

27

Main Result

Every conjuncƟve query without self-joins, that is full, over
relaƟons with ariƟes at most two can be computed in 9 rounds
with load≤ Õ(m

p1/ρ∗).

EssenƟaly opƟmal

ρ∗ seems the right way to express opƟmality for the communicaƟon
cost of distributed query evaluaƟon algorithms, at least when
relaƟon ariƟes do not exceed two.

28

Future Work

Does an algorithm exist with worst-case opƟmal loadm/p1/ρ∗ for
queries over relaƟons with arbitrary-ariƟes?

▶ relaƟon between edge cover / packing unclear in general
▶ half-integral edge cover/packing does not always exist
▶ queries exist where τ∗ > ρ∗

R1(x1, y1, z1), R2(x2, y2, z2), S1(x1, x2), S2(y1, y2), S3(z1, z2).

⇒ Hypercube cannot be used even when there is no skew

Ism/p1/ρ∗ a Ɵght lowerbound for joins over arbitrary-arity
relaƟons?

29

Future Work (2)

Are the 9 rounds essenƟal?

What if queries have existenƟal quanƟficaƟon (projecƟons)?

What if the database has dependencies?

30

Thank you!

31

	The Model
	Lowerbound and Hypercube (* and *)
	Main Result by Example
	Summary & Future Work

